1
|
Fratianni F, Amato G, Ombra MN, De Feo V, Nazzaro F, De Giulio B. Chemical Characterization and Biological Properties of Leguminous Honey. Antioxidants (Basel) 2024; 13:482. [PMID: 38671929 PMCID: PMC11047671 DOI: 10.3390/antiox13040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Honey can beneficially act against different human diseases, helping our body to improve its health. The aim of the present study was first to increase knowledge of some biochemical characteristics (amount and composition of polyphenols and volatile organic compounds, vitamin C content) of five Italian legume honeys (alfalfa, astragalus, carob, indigo, and sainfoin). Furthermore, we evaluated their potential health properties by studying their antioxidant and in vitro anti-inflammatory activities and in vitro inhibitory effects on three enzymes involved in neurodegenerative diseases (acetylcholinesterase, butyrylcholinesterase, and tyrosinase). Alfalfa honey showed the highest total polyphenol content (TPC) (408 μg g-1 of product). Indigo honey showed the lowest TPC (110 μg g-1 of product). The antioxidant activity was noteworthy, especially in the case of sainfoin honey (IC50 = 6.08 mg), which also exhibited excellent inhibitory action against butyrylcholinesterase (74%). Finally, the correlation between the biochemical and functional results allowed us to identify classes of molecules, or even single molecules, present in these five honeys, which are capable of influencing the properties indicated above.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Maria Neve Ombra
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
| | - Vincenzo De Feo
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
| | - Beatrice De Giulio
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
| |
Collapse
|
2
|
Gialouris PLP, Koulis GA, Nastou ES, Dasenaki ME, Maragou NC, Thomaidis NS. Development and validation of a high-throughput headspace solid-phase microextraction gas chromatography-mass spectrometry methodology for target and suspect determination of honey volatiles. Heliyon 2023; 9:e21311. [PMID: 37954321 PMCID: PMC10632477 DOI: 10.1016/j.heliyon.2023.e21311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
The determination of volatile compounds is essential for the chemical characterisation of honey's aroma and its correlation to its sensory profile and botanical origin. The present study describes the development, optimization and validation of a new, simple and reliable method for the determination of volatile compounds in honey using headspace solid-phase microextraction combined with gas chromatography/mass spectrometry (HS-SPME-GC-MS). The optimization of the SPME conditions showed that the ratio of honey: water (2:1) and the incubation temperature (60 °C) are the most critical parameters. Gas chromatography was performed with medium polar Varian CP-Select 624 column and the experimental Retention Index for a number of compounds was determined as an additional identification feature for suspect analysis. The simultaneous use of four internal standards chlorobenzene, benzophenone, 2-pentanol and 4-methyl-2-pentanone and matrix matched calibration enhanced method accuracy achieving recoveries 73-114 % and repeatability ranging between 3.9 and 19 % relative standard deviations. Furthermore, the superiority of the HS-SPME to static head space technique was verified exhibiting four-to nine-fold higher sensitivity. Target and suspect screening were applied to 30 Greek honey samples and 53 volatile compounds belonging to different chemical classes, such as alkanes, aldehydes, ketones, alcohols, and esters were identified with quantified concentrations ranging between 3.1 μg kg-1 (Limonene) up to 20 mg kg-1 (Benzeneacetaldehyde). Among the new findings is the detection of Myrtenol in Greek pine honey and 2,3-butanediol in Greek oak honey. The developed analytical protocol can be a valuable tool in order to chemically characterize honey based on the volatile content.
Collapse
Affiliation(s)
- Panagiotis-Loukas P. Gialouris
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
- Laboratory of Food Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Georgios A. Koulis
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
- Laboratory of Food Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Eleni S. Nastou
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Marilena E. Dasenaki
- Laboratory of Food Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Niki C. Maragou
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| |
Collapse
|
3
|
Zhao L, Wang Y, Wang D, He Z, Gong J, Tan C. Effects of Different Probiotics on the Volatile Components of Fermented Coffee Were Analyzed Based on Headspace-Gas Chromatography-Ion Mobility Spectrometry. Foods 2023; 12:foods12102015. [PMID: 37238833 DOI: 10.3390/foods12102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) was used to study the effects of four kinds of probiotics on the volatile components of fermented coffee. The fingerprints showed that 51 compounds were confirmed and quantified, including 13 esters, 11 aldehydes, 9 alcohols, 6 ketones, 3 furans, 5 terpenes (hydrocarbons), 2 organic acids, 1 pyrazine, and 1 sulfur-containing compound. After fermenting, the aroma of the green beans increases while that of the roasted beans decreases. After roasting, the total amount of aroma components in coffee beans increased by 4.48-5.49 times. The aroma differences between fermented and untreated roasted beans were more significant than those between fermented and untreated green beans. HS-GC-IMS can distinguish the difference in coffee aroma, and each probiotic has a unique influence on the coffee aroma. Using probiotics to ferment coffee can significantly improve the aroma of coffee and provide certain application prospects for improving the quality of commercial coffee beans.
Collapse
Affiliation(s)
- Linfen Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yanhua Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongyu Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zejuan He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiashun Gong
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Chao Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Manousi N, Kalogiouri N, Ferracane A, Zachariadis GA, Samanidou VF, Tranchida PQ, Mondello L, Rosenberg E. Solid-phase microextraction Arrow combined with comprehensive two-dimensional gas chromatography-mass spectrometry for the elucidation of the volatile composition of honey samples. Anal Bioanal Chem 2023; 415:2547-2560. [PMID: 36629895 DOI: 10.1007/s00216-023-04513-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
In this work, a solid-phase microextraction (SPME) Arrow method combined with comprehensive two-dimensional gas chromatography-mass spectrometry (GC × GC-MS) was developed for the elucidation of the volatile composition of honey samples. The sample preparation protocol was optimized to ensure high extraction efficiency of the volatile organic compounds (VOCs) which are directly associated with the organoleptic properties of honey and its acceptance by the consumers. Following its optimization, SPME Arrow was compared to conventional SPME in terms of sensitivity, precision, and number of extracted VOCs. The utilization of SPME Arrow fibers enabled the determination of 203, 147, and 149 compounds in honeydew honey, flower honey, and pine honey, respectively, while a significantly lower number of compounds (124, 94, and 111 for honeydew honey, flower honey, and pine honey, respectively) was determined using conventional SPME. At the same time, the utilization of SPME Arrow resulted in enhanced sensitivity and precision. All things considered, SPME Arrow and GC × GC-MS can be considered as highly suitable for the elucidation of the volatile composition of complex food samples resulting in high sensitivity and separation efficiency.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.,Institute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Natasa Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.,Institute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Antonio Ferracane
- Institute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Vienna, Austria. .,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Peter Q Tranchida
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, Rome, Italy
| | - Erwin Rosenberg
- Institute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Vienna, Austria
| |
Collapse
|
5
|
Koulis GA, Tsagkaris AS, Katsianou PA, Gialouris PLP, Martakos I, Stergiou F, Fiore A, Panagopoulou EI, Karabournioti S, Baessmann C, van der Borg N, Dasenaki ME, Proestos C, Thomaidis NS. Thorough Investigation of the Phenolic Profile of Reputable Greek Honey Varieties: Varietal Discrimination and Floral Markers Identification Using Liquid Chromatography–High-Resolution Mass Spectrometry. Molecules 2022; 27:molecules27144444. [PMID: 35889316 PMCID: PMC9323402 DOI: 10.3390/molecules27144444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Honey is a highly consumed commodity due to its potential health benefits upon certain consumption, resulting in a high market price. This fact indicates the need to protect honey from fraudulent acts by delivering comprehensive analytical methodologies. In this study, targeted, suspect and non-targeted metabolomic workflows were applied to identify botanical origin markers of Greek honey. Blossom honey samples (n = 62) and the unifloral fir (n = 10), oak (n = 24), pine (n = 39) and thyme (n = 34) honeys were analyzed using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) system. Several potential authenticity markers were revealed from the application of different metabolomic workflows. In detail, based on quantitative targeted analysis, three blossom honey markers were found, namely, galangin, pinocembrin and chrysin, while gallic acid concentration was found to be significantly higher in oak honey. Using suspect screening workflow, 12 additional bioactive compounds were identified and semi-quantified, achieving comprehensive metabolomic honey characterization. Lastly, by combining non-targeted screening with advanced chemometrics, it was possible to discriminate thyme from blossom honey and develop binary discriminatory models with high predictive power. In conclusion, a holistic approach to assessing the botanical origin of Greek honey is presented, highlighting the complementarity of the three applied metabolomic approaches.
Collapse
Affiliation(s)
- Georgios A. Koulis
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Aristeidis S. Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Panagiota A. Katsianou
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
| | - Panagiotis-Loukas P. Gialouris
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Ioannis Martakos
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Fotis Stergiou
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
- Division of Engineering and Food Science, School of Applied Science, Abertay University, Bell Street, Dundee DD1 1HG, UK;
| | - Alberto Fiore
- Division of Engineering and Food Science, School of Applied Science, Abertay University, Bell Street, Dundee DD1 1HG, UK;
| | - Eleni I. Panagopoulou
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
| | | | - Carsten Baessmann
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany; (C.B.); (N.v.d.B.)
| | - Noud van der Borg
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany; (C.B.); (N.v.d.B.)
| | - Marilena E. Dasenaki
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
- Correspondence: (M.E.D.); (N.S.T.); Tel.: +30-210-727-4326 (M.E.D.); +30-210-727-4430 (N.S.T.)
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Nikolaos S. Thomaidis
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (P.A.K.); (P.-L.P.G.); (I.M.); (F.S.); (E.I.P.)
- Correspondence: (M.E.D.); (N.S.T.); Tel.: +30-210-727-4326 (M.E.D.); +30-210-727-4430 (N.S.T.)
| |
Collapse
|
6
|
Unifloral Autumn Heather Honey from Indigenous Greek Erica manipuliflora Salisb.: SPME/GC-MS Characterization of the Volatile Fraction and Optimization of the Isolation Parameters. Foods 2021; 10:foods10102487. [PMID: 34681536 PMCID: PMC8535634 DOI: 10.3390/foods10102487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
For long heather honey has been a special variety due to its unique organoleptic characteristics. This study aimed to characterize and optimize the isolation of the dominant volatile fraction of Greek autumn heather honey using solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The described approach pointed out 13 main volatile components more closely related to honey botanical origin, in terms of occurrence and relative abundance. These volatiles include phenolic compounds and norisoprenoids, with benzaldehyde, safranal and p-anisaldehyde present in higher amounts, while ethyl 4-methoxybenzoate is reported for the first time in honey. Then, an experimental design was developed based on five numeric factors and one categorical factor and evaluated the optimum conditions (temperature: 60 °C, equilibration time: 30 min extraction time: 15 min magnetic stirrer velocity: 100 rpm sample volume: 6 mL water: honey ratio: 1:3 (v/w)). Additionally, a validation test set reinforces the above methodology investigation. Honey is very complex and variable with respect to its volatile components given the high diversity of the floral source. As a result, customizing the isolation parameters for each honey is a good approach for streamlining the isolation volatile compounds. This study could provide a good basis for future recognition of monofloral autumn heather honey.
Collapse
|