1
|
Guo D, Xu Y, Xu J, Guo K, Wu N, Cao A, Liu G, Liu X. Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries. Molecules 2024; 29:2228. [PMID: 38792090 PMCID: PMC11123785 DOI: 10.3390/molecules29102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The integration of heterostructures within electrode materials is pivotal for enhancing electron and Li-ion diffusion kinetics. In this study, we synthesized CoO/MnO heterostructures to enhance the electrochemical performance of MnO using a straightforward electrostatic spinning technique followed by a meticulously controlled carbonization process, which results in embedding heterostructured CoO/MnO nanoparticles within porous nitrogen-doped carbon nanofibers (CoO/MnO/NC). As confirmed by density functional theory calculations and experimental results, CoO/MnO heterostructures play a significant role in promoting Li+ ion and charge transfer, improving electronic conductivity, and reducing the adsorption energy. The accelerated electron and Li-ion diffusion kinetics, coupled with the porous nitrogen-doped carbon nanofiber structure, contribute to the exceptional electrochemical performance of the CoO/MnO/NC electrode. Specifically, the as-prepared CoO/MnO/NC exhibits a high reversible specific capacity of 936 mA h g-1 at 0.1 A g-1 after 200 cycles and an excellent high-rate capacity of 560 mA h g-1 at 5 A g-1, positioning it as a competitive anode material for lithium-ion batteries. This study underscores the critical role of electronic and Li-ion regulation facilitated by heterostructures, offering a promising pathway for designing transition metal oxide-based anode materials with high performances for lithium-ion batteries.
Collapse
Affiliation(s)
- Donglei Guo
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Yaya Xu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Jiaqi Xu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Kailong Guo
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Naiteng Wu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Ang Cao
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Guilong Liu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Xianming Liu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| |
Collapse
|
2
|
Liu W, Yang S, Fan D, Wu Y, Zhang J, Lu Y, Fu L. PEG-PVP-Assisted Hydrothermal Synthesis and Electrochemical Performance of N-Doped MoS 2/C Composites as Anode Material for Lithium-Ion Batteries. ACS OMEGA 2024; 9:9792-9802. [PMID: 38434849 PMCID: PMC10905584 DOI: 10.1021/acsomega.3c10031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Molybdenum disulfide shows promise as an anode material for lithium-ion batteries. However, its commercial potential has been constrained due to the poor conductivity and significant volume expansion during the charge/discharge cycles. To address these issues, in this study, N-doped MoS2/C composites (NMC) were prepared via an enhanced hydrothermal method, using ammonium molybdate and thiourea as molybdenum and sulfur sources, respectively. Polyethylene glycol 400 (PEG400) and polyvinylpyrrolidone (PVP) were added in the hydrothermal procedure as soft template surfactants and nitrogen/carbon sources. The crystal structure, morphology, elemental composition, and surface valence state of the N-doped MoS2/C composites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS), respectively. The results indicate that the NMC prepared by this method are spherical particles with a nanoflower-like structure composed of MoS2 flakes, having an average particle size of about 500 nm. XPS analysis shows the existence of C and N elements in the samples as C-N, C-C, and pyrrolic N. As anodes for LIBs, the NMC without annealing deliver an initial discharge capacity of 548.2 mAh·g-1 at a current density of 500 mA·g-1. However, this capacity decays in the following cycles with a discharge capacity of 66.4 mAh·g-1 and a capacity retention rate of only 12% after 50 cycles. In contrast, the electrochemical properties of the counterparts are enhanced after annealing, which exhibits an initial discharge capacity of 575.9 mAh·g-1 and an ultimate discharge capacity of 669.2 mAh·g-1 after 70 cycles. The capacity retention rate decreases initially but later increases and elevated afterward to reach 116% at the 70th cycle, indicating an improvement in charge-discharge performance. The specimens after annealing have a smaller impedance, which indicates better charge transport and lithium-ion diffusion performance.
Collapse
Affiliation(s)
- Wei Liu
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471023, China
- Collaborative
Innovation Center for New Materials and Advanced Processing Technologies
of Nonferrous Metals, Luoyang 471023, China
| | - Shenshen Yang
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471023, China
- Henan
University of Science and Technology National Joint Engineering Research
Center for Abrasion Control and Molding of Metal Materials, Luoyang 471003, China
| | - Dongsheng Fan
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471023, China
- Henan
University of Science and Technology National Joint Engineering Research
Center for Abrasion Control and Molding of Metal Materials, Luoyang 471003, China
| | - Yang Wu
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471023, China
| | - Jingbo Zhang
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471023, China
- Henan
University of Science and Technology National Joint Engineering Research
Center for Abrasion Control and Molding of Metal Materials, Luoyang 471003, China
| | - Yaozong Lu
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471023, China
- Henan
University of Science and Technology National Joint Engineering Research
Center for Abrasion Control and Molding of Metal Materials, Luoyang 471003, China
| | - Linping Fu
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471023, China
- Henan
University of Science and Technology National Joint Engineering Research
Center for Abrasion Control and Molding of Metal Materials, Luoyang 471003, China
| |
Collapse
|
3
|
Goswami S, Nandy S, Fortunato E, Martins R. Polyaniline and its composites engineering: A class of multifunctional smart energy materials. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|