1
|
de Almeida VHM, de Jesus RM, Santana GM, Khan S, Silva EFMS, da Cruz IS, Santos IDS, dos Anjos PNM. The Development of Biocomposite Filaments for 3D Printing by Utilizing a Polylactic Acid (PLA) Polymer Matrix Reinforced with Cocoa Husk Cellulose Fibers. Polymers (Basel) 2024; 16:1757. [PMID: 39000613 PMCID: PMC11244059 DOI: 10.3390/polym16131757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024] Open
Abstract
Vegetable fibers are increasingly used in biocomposites, but there is a need for further development in utilizing by-products like cocoa husks. Three-dimensional printing, through Fused Filament Fabrication (FFF), is advancing rapidly and may be of great interest for applying biocomposite materials. This study focuses on developing innovative and fully biodegradable filaments for the FFF process. PLA filaments were prepared using cellulose fibers derived from cocoa husks (5% mass ratio). One set of filaments incorporated fibers from untreated husks (UCFFs), while another set utilized fibers from chemically treated husks (TCFFs). The fabricated materials were analyzed using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) techniques, and they were also tested for tensile strength. ANOVA reveals that both UCFFs and TCFFs significantly predict tensile strength, with the UCFFs demonstrating an impressive R2 value of 0.9981. The optimal tensile strength for the filament test specimens was 16.05 MPa for TCFF8 and 13.58 MPa for UCFF8, utilizing the same printing parameters: 70% infill and a layer thickness of 0.10 mm. Additionally, there was an 18% improvement in the tensile strength of the printed specimens using the filaments filled with chemically treated cocoa husk fibers compared to the filaments with untreated fibers.
Collapse
Affiliation(s)
- Victor Hugo Martins de Almeida
- Department of Engineering and Computing, State University of Santa Cruz (UESC), Jorge Amado Highway, Km 16, Ilhéus 45662-900, Bahia, Brazil; (E.F.M.S.S.); (I.S.d.C.); (I.d.S.S.)
| | - Raildo Mota de Jesus
- Department of Exact Sciences, State University of Santa Cruz (UESC), Jorge Amado Highway, Km 16, Ilhéus 45662-900, Bahia, Brazil; (R.M.d.J.); (G.M.S.); (S.K.); (P.N.M.d.A.)
| | - Gregório Mateus Santana
- Department of Exact Sciences, State University of Santa Cruz (UESC), Jorge Amado Highway, Km 16, Ilhéus 45662-900, Bahia, Brazil; (R.M.d.J.); (G.M.S.); (S.K.); (P.N.M.d.A.)
| | - Sabir Khan
- Department of Exact Sciences, State University of Santa Cruz (UESC), Jorge Amado Highway, Km 16, Ilhéus 45662-900, Bahia, Brazil; (R.M.d.J.); (G.M.S.); (S.K.); (P.N.M.d.A.)
| | - Erickson Fabiano Moura Sousa Silva
- Department of Engineering and Computing, State University of Santa Cruz (UESC), Jorge Amado Highway, Km 16, Ilhéus 45662-900, Bahia, Brazil; (E.F.M.S.S.); (I.S.d.C.); (I.d.S.S.)
| | - Iago Silva da Cruz
- Department of Engineering and Computing, State University of Santa Cruz (UESC), Jorge Amado Highway, Km 16, Ilhéus 45662-900, Bahia, Brazil; (E.F.M.S.S.); (I.S.d.C.); (I.d.S.S.)
| | - Ian de Souza Santos
- Department of Engineering and Computing, State University of Santa Cruz (UESC), Jorge Amado Highway, Km 16, Ilhéus 45662-900, Bahia, Brazil; (E.F.M.S.S.); (I.S.d.C.); (I.d.S.S.)
| | - Paulo Neilson Marques dos Anjos
- Department of Exact Sciences, State University of Santa Cruz (UESC), Jorge Amado Highway, Km 16, Ilhéus 45662-900, Bahia, Brazil; (R.M.d.J.); (G.M.S.); (S.K.); (P.N.M.d.A.)
| |
Collapse
|
2
|
Rubio-Valle JF, Martín-Alfonso JE, Eugenio ME, Ibarra D, Oliva JM, Manzanares P, Valencia C. Bioethanol lignin-rich residue from olive stones for electrospun nanostructures development and castor oil structuring. Int J Biol Macromol 2024; 255:128042. [PMID: 37977476 DOI: 10.1016/j.ijbiomac.2023.128042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/14/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
This work describes the chemical and structural characterization of a lignin-rich residue from the bioethanol production of olive stones and its use for nanostructures development by electrospinning and castor oil structuring. The olive stones were treated by sequential acid/steam explosion pretreatment, further pre-saccharification using a hydrolytic enzyme, and simultaneous saccharification and fermentation (PSSF). The chemical composition of olive stone lignin-rich residue (OSL) was evaluated by standard analytical methods, showing a high lignin content (81.3 %). Moreover, the structural properties were determined by Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and size exclusion chromatography. OSL showed a predominance of β-β' resinol, followed by β-O-4' alkyl aryl ethers and β-5' phenylcoumaran substructures, high molecular weight, and low S/G ratio. Subsequently, electrospun nanostructures were obtained from solutions containing 20 wt% OSL and cellulose triacetate with variable weight ratios in N, N-Dimethylformamide/Acetone blends and characterized by scanning electron microscopy. Their morphologies were highly dependent on the rheological properties of polymeric solutions. Gel-like dispersions can be obtained by dispersing the electrospun OSL/CT bead nanofibers and uniform nanofiber mats in castor oil. The rheological properties were influenced by the membrane concentration and the OSL:CT weight ratio, as well as the morphology of the electrospun nanostructures.
Collapse
Affiliation(s)
- José F Rubio-Valle
- Pro(2)TecS - Chemical Product and Process Technology Research Center, Department of Chemical Engineering and Materials Science, Universidad de Huelva, ETSI, Campus de "El Carmen", Huelva 21071, Spain
| | - José E Martín-Alfonso
- Pro(2)TecS - Chemical Product and Process Technology Research Center, Department of Chemical Engineering and Materials Science, Universidad de Huelva, ETSI, Campus de "El Carmen", Huelva 21071, Spain
| | - María E Eugenio
- Instituto de Ciencias Forestales (ICIFOR-INIA, CSIC), Ctra de la Coruña Km 7.5, Madrid 28040, Spain
| | - David Ibarra
- Instituto de Ciencias Forestales (ICIFOR-INIA, CSIC), Ctra de la Coruña Km 7.5, Madrid 28040, Spain
| | - José M Oliva
- Biofuels Unit, Renewable Energies Division, CIEMAT, Avda. Complutense 40, Madrid 28040, Spain
| | - Paloma Manzanares
- Biofuels Unit, Renewable Energies Division, CIEMAT, Avda. Complutense 40, Madrid 28040, Spain
| | - Concepción Valencia
- Pro(2)TecS - Chemical Product and Process Technology Research Center, Department of Chemical Engineering and Materials Science, Universidad de Huelva, ETSI, Campus de "El Carmen", Huelva 21071, Spain.
| |
Collapse
|
3
|
Rosado MJ, Rencoret J, Gutiérrez A, Del Río JC. Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree ( Citrus sinensis) Pruning Residue. Polymers (Basel) 2023; 15:polym15081840. [PMID: 37111987 PMCID: PMC10143716 DOI: 10.3390/polym15081840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The pruning of sweet orange trees (Citrus sinensis) generates large amounts of lignocellulosic residue. Orange tree pruning (OTP) residue presents a significant lignin content (21.2%). However, there are no previous studies describing the structure of the native lignin in OTPs. In the present work, the "milled-wood lignin" (MWL) was extracted from OTPs and examined in detail via gel permeation chromatography (GPC), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and two-dimensional nuclear magnetic resonance (2D-NMR). The results indicated that the OTP-MWL was mainly composed of guaiacyl (G) units, followed by syringyl (S) units and minor amounts of p-hydroxyphenyl (H) units (H:G:S composition of 1:62:37). The predominance of G-units had a strong influence on the abundance of the different linkages; therefore, although the most abundant linkages were β-O-4' alkyl-aryl ethers (70% of total lignin linkages), the lignin also contained significant amounts of phenylcoumarans (15%) and resinols (9%), as well as other condensed linkages such as dibenzodioxocins (3%) and spirodienones (3%). The significant content of condensed linkages will make this lignocellulosic residue more recalcitrant to delignification than other hardwoods with lower content of these linkages.
Collapse
Affiliation(s)
- Mario J Rosado
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| |
Collapse
|
4
|
NMR Study on Laccase Polymerization of Kraft Lignin Using Different Enzymes Source. Int J Mol Sci 2023; 24:ijms24032359. [PMID: 36768678 PMCID: PMC9917248 DOI: 10.3390/ijms24032359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The usage of laccases is a sustainable and environmentally friendly approach to modifying the Kraft lignin structure for use in certain applications. However, the inherent structure of Kraft lignin, as well as that resulting from laccase modification, still presents challenges for fundamental comprehension and successful lignin valorization. In this study, bacterial and fungal laccases were employed to modify eucalypt Kraft lignin. To evaluate the type and range of the chemical and structural changes of laccase-treated lignins, different NMR techniques, including solution 1H and 2D NMR (heteronuclear single quantum correlation (HSQC)), and solid-state 13C NMR, were applied. Size exclusion chromatography and infrared spectroscopy were also used. Interestingly, HSQC analysis showed substantial changes in the oxygenated aliphatic region of lignins, showing an almost complete absence of signals corresponding to side-chains due to laccase depolymerization. Simultaneously, a significant loss of aromatic signals was observed by HSQC and 1H NMR, which was attributed to a deprotonation of the lignin benzenic rings due to polymerization/condensation by laccase reactions. Then, condensed structures, such as α-5', 5-5', and 4-O-5', were detected by HSQC and 13C NMR, supporting the increment in molecular weight, as well as the phenolic content reduction determined in lignins.
Collapse
|
5
|
Cassoni AC, Costa P, Vasconcelos MW, Pintado M. Systematic review on lignin valorization in the agro-food system: From sources to applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115258. [PMID: 35751227 DOI: 10.1016/j.jenvman.2022.115258] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic biomass is the most abundant renewable resource on earth and currently most of this biomass is considered a low-value waste. Specifically, lignin is an underrated bioresource that is mostly burned for energy production and few value-added products have been created. Since the agro-food industry produces large amounts of wastes that can be potential sources of high-quality lignin, scientific efforts should be directed to this industry. Thus, this review provides a systematic overview of the trends and evolution of research on agro-food system-derived lignin (from 2010 to 2020), including the extraction of lignin from various agro-food sources and emergent applications of lignin in the agro-food chain. Crops with the highest average production/year (n = 26) were selected as potential lignin sources. The extraction process efficiency (yield) and lignin purity were used as indicators of the raw material potential. Overall, it is notable that research interest on agro-food lignin has increased exponentially over the years, both as source (567%) and application (128%). Wheat, sugarcane, and maize are the most studied sources and are the ones that render the highest lignin yields. As for the extraction methods used, alkaline and organosolv methods are the most employed (∼50%). The main reported applications are related to lignin incorporation in polymers (∼55%) and as antioxidant (∼24%). Studies on agro-food system-derived lignin is of most importance since there are numerous possible sources that are yet to be fully valorized and many promising applications that need to be further developed.
Collapse
Affiliation(s)
- Ana C Cassoni
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Patrícia Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
6
|
García-Fuentevilla L, Rubio-Valle JF, Martín-Sampedro R, Valencia C, Eugenio ME, Ibarra D. Different Kraft lignin sources for electrospun nanostructures production: Influence of chemical structure and composition. Int J Biol Macromol 2022; 214:554-567. [PMID: 35752340 DOI: 10.1016/j.ijbiomac.2022.06.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
This work focuses on the structural features and physicochemical properties of different Kraft lignins and how they can influence the electrospinning process to obtain nanostructures. Structural features of Kraft lignins were characterized by Nuclear Magnetic Resonance, Size Exclusion Chromatography, Fourier-transform Infrared Spectroscopy, and thermal analysis, whereas chemical composition was analyzed by standard method. The addition of cellulose acetate (CA) improves the electrospinning process of Kraft lignins (KL). Thus, solutions of KL/CA at 30 wt% with a KL:CA weight ratio of 70:30 were prepared and then physicochemical and rheologically characterized. The morphology of electrospun nanostructures depends on the intrinsic properties of the solutions and the chemical structure and composition of Kraft lignins. Then, surface tension, electrical conductivity and viscosity of eucalypt/CA and poplar/CA solutions were suitable to obtain electrospun nanostructures based on uniform cross-linked nanofibers with a few beaded fibers. It could be related with the higher purity and higher linear structure, phenolic content and S/G ratios of lignin samples. However, the higher values of electrical conductivity and viscosity of OTP/CA solutions resulted in electrospun nanostructure with micro-sized particles connected by thin fibers, due to a lower purity, S/G ratio and phenolic content and higher branched structure in OTP lignin.
Collapse
Affiliation(s)
| | - José F Rubio-Valle
- Pro2TecS-Chemical Process and Product Technology Research Centre, Departamento de Ingeniería Química, ETSI, Campus de "El Carmen", Universidad de Huelva, 21071 Huelva, Spain
| | | | - Concepción Valencia
- Pro2TecS-Chemical Process and Product Technology Research Centre, Departamento de Ingeniería Química, ETSI, Campus de "El Carmen", Universidad de Huelva, 21071 Huelva, Spain
| | - María E Eugenio
- Forest Research Center, INIA-CSIC, Ctra. de la Coruña, km 7.5., 28040 Madrid, Spain.
| | - David Ibarra
- Forest Research Center, INIA-CSIC, Ctra. de la Coruña, km 7.5., 28040 Madrid, Spain
| |
Collapse
|
7
|
Burger R, Lindner S, Rumpf J, Do XT, Diehl BW, Rehahn M, Monakhova YB, Schulze M. Benchtop versus high field NMR: Comparable performance found for the molecular weight determination of lignin. J Pharm Biomed Anal 2022; 212:114649. [DOI: 10.1016/j.jpba.2022.114649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
|
8
|
Aliaño-González MJ, Gabaston J, Ortiz-Somovilla V, Cantos-Villar E. Wood Waste from Fruit Trees: Biomolecules and Their Applications in Agri-Food Industry. Biomolecules 2022; 12:238. [PMID: 35204739 PMCID: PMC8961605 DOI: 10.3390/biom12020238] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
In the European Union (EU), a total of 11,301,345 hectares are dedicated to the cultivation of fruit trees, mainly olive orchards, grapevines, nut trees (almond, walnut, chestnut, hazelnut, and pistachio), apple and pear trees, stone fruit trees (peach, nectarine, apricot, cherry, and plum), and citrus fruit trees (orange, clementine, satsuma, mandarin, lemon, grapefruit, and pomelo). Pruning these trees, together with plantation removal to a lesser extent, produces a huge amount of wood waste. A theoretical calculation of the wood waste in the European Union estimates approximately 2 and 25 million tons from wood plantation removal and pruning, respectively, per year. This wood waste is usually destroyed by in-field burning or crushing into the soil, which result in no direct economic benefits. However, wood from tree pruning, which is enriched in high added-value molecules, offers a wide spectrum of possibilities for its valorization. This review focuses on the contribution of wood waste to both sustainability and the circular economy, considering its use not only as biomass but also as a potential source of bioactive compounds. The main bioactive compounds found in wood are polyphenols, terpenes, polysaccharides, organic compounds, fatty acids, and alkaloids. Polyphenols are the most ubiquitous compounds in wood. Large amounts of hydroxytyrosol (up to 25 g/kg dw), resveratrol (up to 66 g/kg dw), protocatechuic acid (up to 16.4 g/kg), and proanthocyanins (8.5 g/kg dw) have been found in the wood from olive trees, grapevines, almond trees and plum trees, respectively. The bioactivity of these compounds has been demonstrated at lower concentrations, mainly in vitro studies. Bioactive compounds present antioxidant, antimicrobial, antifungal, biostimulant, anti-inflammatory, cardioprotective, and anticarcinogenic properties, among others. Therefore, wood extracts might have several applications in agriculture, medicine, and the food, pharmaceutical, nutraceutical, and cosmetics industries. For example, olive tree wood extract reduced thrombin-induced platelet aggregation in vitro; grapevine tree wood extract acts a preservative in wine, replacing SO2; chestnut tree wood extract has antifungal properties on postharvest pathogens in vitro; and stone tree wood extracts are used for aging both wines and brandies. Moreover, the use of wood waste contributes to the move towards both a more sustainable development and a circular economy.
Collapse
Affiliation(s)
- Maria Jose Aliaño-González
- IFAPA Rancho de la Merced, Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, 11471 Jerez de la Frontera, Spain;
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Cádiz, 11510 Cadiz, Spain
| | - Julien Gabaston
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain;
| | - Victor Ortiz-Somovilla
- IFAPA Alameda del Obispo, Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, Avenida Menéndez Pidal, 14004 Córdoba, Spain;
| | - Emma Cantos-Villar
- IFAPA Rancho de la Merced, Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, 11471 Jerez de la Frontera, Spain;
| |
Collapse
|