1
|
Ding R, Chen J, Chen Y, Liu J, Bando Y, Wang X. Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation. Chem Soc Rev 2024. [PMID: 39382108 DOI: 10.1039/d4cs00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Machine learning (ML) is rapidly emerging as a pivotal tool in the hydrogen energy industry for the creation and optimization of electrocatalysts, which enhance key electrochemical reactions like the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), the hydrogen oxidation reaction (HOR), and the oxygen reduction reaction (ORR). This comprehensive review demonstrates how cutting-edge ML techniques are being leveraged in electrocatalyst design to overcome the time-consuming limitations of traditional approaches. ML methods, using experimental data from high-throughput experiments and computational data from simulations such as density functional theory (DFT), readily identify complex correlations between electrocatalyst performance and key material descriptors. Leveraging its unparalleled speed and accuracy, ML has facilitated the discovery of novel candidates and the improvement of known products through its pattern recognition capabilities. This review aims to provide a tailored breakdown of ML applications in a format that is readily accessible to materials scientists. Hence, we comprehensively organize ML-driven research by commonly studied material types for different electrochemical reactions to illustrate how ML adeptly navigates the complex landscape of descriptors for these scenarios. We further highlight ML's critical role in the future discovery and development of electrocatalysts for hydrogen energy transformation. Potential challenges and gaps to fill within this focused domain are also discussed. As a practical guide, we hope this work will bridge the gap between communities and encourage novel paradigms in electrocatalysis research, aiming for more effective and sustainable energy solutions.
Collapse
Affiliation(s)
- Rui Ding
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Junhong Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Yuxin Chen
- Department of Computer Science, University of Chicago, Chicago, IL 60637, USA.
| | - Jianguo Liu
- Institute of Energy Power Innovation, North China Electric Power University, Beijing, 102206, China
| | - Yoshio Bando
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xuebin Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
2
|
Ayyubov I, Tálas E, Berghian-Grosan C, Románszki L, Borbáth I, Pászti Z, Szegedi Á, Mihály J, Vulcu A, Tompos A. Nitrogen doped carbonaceous materials as platinum free cathode electrocatalysts for oxygen reduction reaction (ORR). REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractComparison of physicochemical properties and electrocatalytic behavior of different N-doped carbonaceous materials as potential catalysts for oxygen reduction reaction (ORR) was attended. Ball-milling of graphite with melamine and solvothermal treatment of graphite oxide, graphene nanoplatelets (GNP) with ammonia were used as preparation methods. Elemental analysis and N2 physisorption measurements revealed the synthesis of N-doped materials with strongly different morphological parameters. Contact angle measurements proved that all three samples had good wettability properties. According to analysis of XRD data and Raman spectra a higher nitrogen concentration corresponded to a smaller size of crystallites of the N-doped carbonaceous material. Surface total N content determined by XPS and bulk N content assessed by elemental analysis were close, indicating homogenous inclusion of N in all samples. Rotating disc electrode tests showed that these N-doped materials weremuch less active in acidic medium than in an alkaline environment. Although the presence of in-plane N species is regarded to be advantageous for the ORR activity, no particular correlation was found in these systems with any type of N species. According to Koutecky–Levich analysis, both the N-containing carbonaceous materials and the reference Pt/C catalyst displayed a typical one-step, four-electron ORR route. Both ball-milled sample with high N-content but with low SSA and solvothermally synthesized N-GNP with high SSA but low N content showed significant ORR activity. It could be concluded that beside the total N content other parameters such as SSA, pore structure, structural defects, wettability were also essential for achieving high ORR activity.
Collapse
|
3
|
Salverda M, Thiruppathi AR, Pakravan F, Wood PC, Chen A. Electrochemical Exfoliation of Graphite to Graphene-Based Nanomaterials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248643. [PMID: 36557776 PMCID: PMC9783006 DOI: 10.3390/molecules27248643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Here, we report on a new automated electrochemical process for the production of graphene oxide (GO) from graphite though electrochemical exfoliation. The effects of the electrolyte and applied voltage were investigated and optimized. The morphology, structure and composition of the electrochemically exfoliated GO (EGO) were probed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), FTIR spectroscopy and Raman spectroscopy. Important metrics such as the oxygen content (25.3 at.%), defect density (ID/IG = 0.85) and number of layers of the formed EGO were determined. The EGO was also compared with the GO prepared using the traditional chemical method, demonstrating the effectiveness of the automated electrochemical process. The electrochemical properties of the EGO, CGO and other carbon-based materials were further investigated and compared. The automated electrochemical exfoliation of natural graphite powder demonstrated in the present study does not require any binders; it is facile, cost-effective and easy to scale up for a large-scale production of graphene-based nanomaterials for various applications.
Collapse
Affiliation(s)
- Michael Salverda
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Antony Raj Thiruppathi
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Farnood Pakravan
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Peter C. Wood
- Zentek Ltd., 24 Corporate Court, Guelph, ON N1G 5G5, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
4
|
Preparation of Pt electrocatalyst supported by novel, Ti(1−x)MoxO2-C type of composites containing multi-layer graphene. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-021-02138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractBall milling is a relative simple and promising technique for preparation of inorganic oxide–carbon type of composites. Novel TiO2-C and Ti0.8Mo2O2-C type of composites containing multi-layer graphene were prepared by ball milling of graphite in order to get electrocatalyst supports for polymer electrolyte membrane fuel cells. Starting rutile TiO2 was obtained from P25 by heat treatment. Carbon-free Ti0.8Mo2O2 mixed oxide, prepared using our previously developed multistep sol–gel method, does not meet the requirements for materials of electrocatalyst support, therefore parent composites with Ti0.8Mo2O2/C = 75/25, 90/10 and 95/5 mass ratio were prepared using Black Pearls 2000. XRD study of parent composites proved that the oxide part existed in rutile phase which is prerequisite of the incorporation of oxophilic metals providing CO tolerance for the electrocatalyst. Ball milling of TiO2 or parent composites with graphite resulted in catalyst supports with enhanced carbon content and with appropriate specific surface areas. XRD and Raman spectroscopic measurements indicated the changes of graphite during the ball milling procedure while the oxide part remained intact. TEM images proved that platinum existed in the form of highly dispersed nanoparticles on the surface of both the Mo-free and of Mo-containing electrocatalyst. Electrocatalytic performance of the catalysts loaded with 20 wt% Pt was studied by cyclic voltammetry, COads-stripping voltammetry done before and after the 500-cycle stability test, as well as by the long-term stability test involving 10,000 polarization cycles. Enhanced CO tolerance and slightly lower stability comparing to Pt/TiO2-C was demonstrated for Pt/Ti0.8Mo2O2-C catalysts.
Collapse
|