1
|
Alzahrani AYA, Shehab WS, Amer AH, Assy MG, Mouneir SM, Aziz MA, Abdel Hamid AM. Design, synthesis, pharmacological evaluation, and in silico studies of the activity of novel spiro pyrrolo[3,4- d]pyrimidine derivatives. RSC Adv 2024; 14:995-1008. [PMID: 38174254 PMCID: PMC10759174 DOI: 10.1039/d3ra07078f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
In the present study, spiro compounds are shown to have distinctive characteristics because of their interesting conformations and their structural impacts on biological systems. A new family of functionalized spiro pyrrolo[3,4-d]pyrimidines is prepared via the one-pot condensation reaction of amino cyclohexane derivatives with benzaldehyde to prepare fused azaspiroundecanedione and azaspirodecenone/thione derivatives. A series of synthesized spiro compounds were scanned against DPPH and evaluated for their ability to inhibit COX-1 and COX-2. All compounds exhibit significant antiinflammatory activity, and they inhibited both COX-1 and COX-2 enzymes with a selectivity index higher than celecoxib as a reference drug. The most powerful and selective COX-2 inhibitor compounds were 11 and 6, with selectivity indices of 175 and 129.21 in comparison to 31.52 of the standard celecoxib. However, candidate 14 showed a very promising antiinflammatory activity with an IC50 of 6.00, while celecoxib had an IC50 of 14.50. Our findings are promising in the area of medicinal chemistry for further optimization of the newly designed and synthesized compounds regarding the discussed structure-activity relationship study (SAR), in order to obtain a superior antioxidant lead compound in the near future. All chemical structures of the novel synthesized candidates were unequivocally elucidated and confirmed utilizing spectroscopic and elemental investigations.
Collapse
Affiliation(s)
- Abdullah Y A Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University Mohail Assir Saudi Arabia
| | - Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Asmaa H Amer
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Mohamed G Assy
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University Cairo 12211 Egypt
| | - Maged A Aziz
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Atef M Abdel Hamid
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| |
Collapse
|
2
|
Li Q, Qin S, Tian H, Liu R, Qiao L, Liu S, Li B, Yang M, Shi J, Nice EC, Li J, Lang T, Huang C. Nano-Econazole Enhanced PD-L1 Checkpoint Blockade for Synergistic Antitumor Immunotherapy against Pancreatic Ductal Adenocarcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207201. [PMID: 36899444 DOI: 10.1002/smll.202207201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/04/2023] [Indexed: 06/08/2023]
Abstract
Insufficienct T lymphocyte infiltration and unresponsiveness to immune checkpoint blockade therapy are still major difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). Although econazole has shown promise in inhibiting PDAC growth, its poor bioavailability and water solubility limit its potential as a clinical therapy for PDAC. Furthermore, the synergistic role of econazole and biliverdin in immune checkpoint blockade therapy in PDAC remains elusive and challenging. Herein, a chemo-phototherapy nanoplatform is designed by which econazole and biliverdin can be co-assembled (defined as FBE NPs), which significantly improve the poor water solubility of econazole and enhance the efficacy of PD-L1 checkpoint blockade therapy against PDAC. Mechanistically, econazole and biliverdin are directly released into the acidic cancer microenvironment, to activate immunogenic cell death via biliverdin-induced PTT/PDT and boost the immunotherapeutic response of PD-L1 blockade. In addition, econazole simultaneously enhances PD-L1 expression to sensitize anti-PD-L1 therapy, leading to suppression of distant tumors, long-term immune memory effects, improved dendritic cell maturation, and tumor infiltration of CD8+ T lymphocytes. The combined FBE NPs and α-PDL1 show synergistic antitumor efficacy. Collectively, FBE NPs show excellent biosafety and antitumor efficacy by combining chemo-phototherapy with PD-L1 blockade, which has promising potential in a precision medicine approach as a PDAC treatment strategy.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Hailong Tian
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Ling Qiao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Shanshan Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, 563006, P. R. China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Jiayan Shi
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jingquan Li
- Department of Gastrointestinal Oncology Surgery, the First Affiliated Hospital of Hainan Medical University, Hainan Province, Haikou, 570216, P. R. China
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, Chongqing, 400030, P. R. China
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, 400042, P. R. China
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| |
Collapse
|
3
|
Thapa Magar TB, Lee J, Lee JH, Jeon J, Gurung P, Lim J, Kim YW. Novel Chlorin e6-Curcumin Derivatives as a Potential Photosensitizer: Synthesis, Characterization, and Anticancer Activity. Pharmaceutics 2023; 15:1577. [PMID: 37376026 DOI: 10.3390/pharmaceutics15061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Novel series of chlorin e6-curcumin derivatives were designed and synthesized. All the synthesized compounds 16, 17, 18, and 19 were tested for their photodynamic treatment (PDT) efficacy against human pancreatic cancer cell lines: AsPC-1, MIA-PaCa-2, and PANC-1. The cellular uptake study was performed in the aforementioned cell lines using fluorescence-activated cell sorting (FACS). 17, among the synthesized compounds with IC50 values of 0.27, 0.42, and 0.21 µM against AsPC-1, MIA PaCa-2, and PANC-1 cell lines, respectively, demonstrated excellent cellular internalization capability and exhibited higher phototoxicity relative to the parent Ce6. The quantitative analyses using Annexin V-PI staining revealed that the 17-PDT-induced apoptosis was dose-dependent. In pancreatic cell lines, 17 reduced the expression of the anti-apoptotic protein, Bcl-2, and increased the pro-apoptotic protein, cytochrome C, which indicates the activation of intrinsic apoptosis, the primary cause of cancer cell death. Structure-activity relationship studies have shown that the incorporation of additional methyl ester moiety and conjugation to the enone moiety of curcumin enhances cellular uptake and PDT efficacy. Moreover, in vivo PDT testing in melanoma mouse models revealed that 17-PDT greatly reduced tumor growth. Therefore, 17 might be an effective photosensitizer for PDT anticancer therapy.
Collapse
Affiliation(s)
| | - Jusuk Lee
- A&J Science Co., Ltd., Daegu 41061, Republic of Korea
| | - Ji Hoon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Juhee Jeon
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| | - Pallavi Gurung
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| | - Junmo Lim
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| | - Yong-Wan Kim
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| |
Collapse
|
4
|
Abdel Hamid AM, Amer AH, Assy MG, Zordok WA, Mouneir SM, El-Kalyoubi S, Shehab WS. Synthesis, pharmacological evaluation, DFT calculation, and theoretical investigation of spirocyclohexane derivatives. Bioorg Chem 2023; 131:106280. [PMID: 36436418 DOI: 10.1016/j.bioorg.2022.106280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
Polycyclic structures fused at a central carbon are of great interest due to their appealing conformational features and their structural implications in biological systems. Although progress in the development of synthetic methodologies toward such structures has been impressive, the stereo selective construction of such quaternary stereo centers remains a significant challenge in the total synthesis of natural products. From the computational calculations by Density Functional Theory along with the B3LYP as basis set, It is obvious that the all studied compounds are soft molecules and η varied from 0.069 for compound (10) to 0.087 for compound (15), while the compound (14) is treated as hard molecule, the value of η is 0.102, also the electronic transition within the soft compounds is easy as indicated from the △E, the compound (10) is absolute soft according to the (σ = 14.49 eV), while the compound (14) is treated as hard compounds (σ = 9.804 eV). The newly formed compounds exhibited both anti-inflammatory and antioxidant activities on HRBC homolytic and membrane stabilization and DPPH scavenging percent, respectively.
Collapse
Affiliation(s)
- Atef M Abdel Hamid
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa H Amer
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed G Assy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Wael A Zordok
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
5
|
Jeelan Basha N, Basavarajaiah SM, Shyamsunder K. Therapeutic potential of pyrrole and pyrrolidine analogs: an update. Mol Divers 2022; 26:2915-2937. [PMID: 35079946 PMCID: PMC8788913 DOI: 10.1007/s11030-022-10387-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
The chemistry of nitrogen-containing heterocyclic compound pyrrole and pyrrolidine has been a versatile field of study for a long time for its diverse biological and medicinal importance. Biomolecules such as chlorophyll, hemoglobin, myoglobin, and cytochrome are naturally occurring metal complexes of pyrrole. These metal complexes play a vital role in a living system like photosynthesis, oxygen carrier, as well storage, and redox cycling reactions. Apart from this, many medicinal drugs are derived from either pyrrole, pyrrolidine, or by its fused analogs. This review mainly focuses on the therapeutic potential of pyrrole, pyrrolidine, and its fused analogs, more specifically anticancer, anti-inflammatory, antiviral, and antituberculosis. Further, this review summarizes more recent reports on the pyrrole, pyrrolidine analogs, and their biological potential.
Collapse
Affiliation(s)
- N Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, 560043, India.
| | - S M Basavarajaiah
- P.G. Department of Chemistry, Vijaya College, Bengaluru, Karnataka, 560004, India
| | - K Shyamsunder
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, 560043, India
| |
Collapse
|