1
|
Milborne B, Arjuna A, Islam MT, Arafat A, Layfield R, Thompson A, Ahmed I. Yttrium-Enriched Phosphate Glass-Ceramic Microspheres for Bone Cancer Radiotherapy Treatment. ACS OMEGA 2024; 9:50933-50944. [PMID: 39758667 PMCID: PMC11696403 DOI: 10.1021/acsomega.4c02825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 01/07/2025]
Abstract
This study presents the development and characterization of high yttrium-content phosphate-based glass-ceramic microspheres for potential applications in bone cancer radiotherapy treatment. The microspheres produced via flame spheroidization, followed by sieving, revealed a lack of aggregation and a narrow size distribution (45-125 μm) achieved across different yttrium oxide to glass ratio samples. Energy dispersive X-ray (EDX) analysis showed a significant increase in yttrium content within the microspheres with increasing yttrium oxide to glass ratio samples, ranging from approximately 1-39 mol % for 10Y-50Y microspheres, respectively. Concurrently, a proportional decrease in the phosphate, calcium, and magnesium content was observed. Further EDX mapping showed a homogeneous distribution of all elements throughout the microspheres, indicating uniform composition. X-ray diffraction profiles confirmed the amorphous nature of the starting P40 glass microspheres, while yttrium-containing microspheres exhibited crystalline peaks corresponding to cubic and hexagonal Y2O3 and Y(PO4) phases, indicating the formation of glass-ceramic materials. Ion release studies revealed the reduction of all ion release rates from yttrium-containing microspheres compared with P40 microspheres. The pH of the surrounding media was also stable at approximately pH 7 over time, highlighting the chemical durability of the microspheres' produced. In vitro cytocompatibility studies demonstrated that both indirect and direct cell culture methods showed favorable cellular responses. The metabolic and alkaline phosphatase activity assays indicated comparable or enhanced cell responses on yttrium-containing microspheres compared to the initial P40 glass microspheres. Overall, these findings showed that significantly high yttrium-content phosphate glass-ceramic microspheres could be produced as versatile biomaterials offering potential applications for combined bone cancer radiotherapy treatment and bone regeneration.
Collapse
Affiliation(s)
- Ben Milborne
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Andi Arjuna
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
- Faculty
of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Md Towhidul Islam
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Abul Arafat
- School
of Engineering, University of Wolverhampton,
Telford Innovation Campus, Telford TF2 9NT, U.K.
| | - Robert Layfield
- School
of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, U.K.
| | - Alexander Thompson
- Biodiscovery
Institute, Division of Cancer and Stem Cells, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Ifty Ahmed
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
2
|
Kalra A, Rowcroft A, Trinder M, Ballal M, Bhandari M. Use of selective internal radiation therapy with yttrium-90 as a bridge to liver resection: a 5-year single-center experience. J Gastrointest Surg 2024; 28:1970-1975. [PMID: 39265776 DOI: 10.1016/j.gassur.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Selective internal radiation therapy (SIRT) with yttrium-90 (Y-90) has been historically reserved for unresectable liver malignancy. Evidence is emerging for the use of SIRT to increase future liver remnant (FLR), allowing for the resection of previously inoperable disease. METHODS This was a 5-year retrospective review of all patients undergoing SIRT with Y-90 at a tertiary institute. Patient demographics, clinicopathologic data, surgical details, and postoperative outcomes were reviewed. The primary outcome, safety of liver resection after SIRT, was evaluated with 90-day morbidity and mortality. RESULTS A total of 134 SIRT procedures were performed on 113 patients. Post-SIRT complications occurred in 18 patients (15.9%), with a single 30-day mortality. In addition, 17 patients underwent SIRT with the intent to augment FLR for liver resection. After SIRT, mean hepatic mebrofenin extraction and FLR increased from 2.5%/min/m2 and 30.5% to 4.2%/min/m2 and 52.5% (P = .01 and P < .0001, respectively). Ten patients underwent resection, and there were 2 intraoperative complications. The median time from SIRT to resection was 5.2 months. The 90-day postoperative morbidity was 20% (n = 2), and complications were analyzed according to the Clavien-Dindo II classification scale. There was no 30-day or 90-day postoperative mortality. CONCLUSION Post-SIRT liver resection is a challenging procedure with low postoperative mortality and morbidity.
Collapse
Affiliation(s)
- Aryan Kalra
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.
| | - Alistair Rowcroft
- Department of General Surgery, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Matthew Trinder
- Department of General Surgery, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Mohammed Ballal
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia; Department of General Surgery, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Mayank Bhandari
- Department of General Surgery, Fiona Stanley Hospital, Perth, Western Australia, Australia; School of Medicine, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Bucalau AM, Collette B, Tancredi I, Vierasu I, Tannouri F, Pezzullo M, Moreno-Reyes R, Verset G. 166Ho-RadioEmbolizaTiOn Using personalized prediCtive dosimetry in patients with Hepatocellular carcinoma: A prospective, single-centre study (RETOUCH). Liver Int 2024. [PMID: 39569818 DOI: 10.1111/liv.15923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND AND AIMS Holmium-166 (166Ho) radioembolization could offer a more individualized approach in terms of imaging and dosimetry. We aim to evaluate the feasibility and safety of 166Ho selective internal radiation therapy (SIRT) using a higher tumour dose than previously administered determined by 166Ho-scout as a surrogate marker in HCC patients. METHODS This is an open-label, prospective, non-randomized, single-centre pilot study that included patients with HCC that received 166Ho-SIRT if the work-up using 166Ho-scout showed a tumour-absorbed dose ≥150 Gy, a non-tumoural liver absorbed dose less than 60 Gy and a lung absorbed dose less than 30 Gy. Primary endpoints were feasibility and safety-toxicity profiles at 24-48 h and 1 month. Overall response rates (ORR) at 3 months (mRECIST, RECIST 1.1 and metabolic response by FDG and choline PET CT) and time to progression (TTP) represented the secondary endpoints. RESULTS Fifteen patients with large tumours (mean diameter 55.67 ± 28.42 mm) received 17 166Ho-SIRT treatments between July 2020 and June 2022. All the attempted treatments were accomplished. Mean administered tumour dose was 183.18 ± 71.71 Gy, while non-tumour liver dose was 30.29 ± 14.56 Gy. Median time of follow-up was 12 months (IQR 9-16). Only grade 1-2 clinical and biological AEs were observed. There were no liver decompensations. At 3 months, objective response was achieved for all target lesions (CR 78.57%, PR 21.43% according to mRECIST). Median TTP was 18.8 (range 2.9; n.e.) months. CONCLUSION Personalized 166Ho-SIRT with a tumour delivered dose ≥150 Gy was feasible and safe for HCC patients with promising response rates.
Collapse
Affiliation(s)
- Ana-Maria Bucalau
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Benoît Collette
- Department of Nuclear Medicine, Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
- Laboratory of Image Synthesis and Analysis, Brussels School of Engineering, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Illario Tancredi
- Department of Radiology, Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Irina Vierasu
- Department of Nuclear Medicine, Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Fadi Tannouri
- Department of Radiology, Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Martina Pezzullo
- Department of Radiology, Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Rodrigo Moreno-Reyes
- Department of Nuclear Medicine, Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gontran Verset
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
- Medical Oncology Department, Institut Paoli-Calmettes Marseille, Marseille, France
| |
Collapse
|
4
|
Gupta A, Park JY, Choi H, Choi TH, Chung Y, Kim DH, Lee YS. Development of Alginate-Based Biodegradable Radioactive Microspheres Labeled with Positron Emitter through Click Chemistry Reaction: Stability and PET Imaging Study. Mol Pharm 2024; 21:5005-5014. [PMID: 39169803 DOI: 10.1021/acs.molpharmaceut.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Biodegradable radioactive microspheres labeled with positron emitters hold significant promise for diagnostic and therapeutic applications in cancers and other diseases, including arthritis. The alginate-based polymeric microspheres offer advantages such as biocompatibility, biodegradability, and improved stability, making them suitable for clinical applications. In this study, we developed novel positron emission tomography (PET) microspheres using alginate biopolymer radiolabeled with gallium-68 (68Ga) through a straightforward conjugation reaction. Polyethylenimine (PEI)-decorated calcium alginate microspheres (PEI-CAMSs) were fabricated and further modified using azadibenzocyclooctyne-N-hydroxysuccinimide ester (ADIBO-NHS). Subsequently, azide-functionalized NOTA chelator (N3-NOTA) was labeled with [68Ga]Ga to obtain [68Ga]Ga-NOTA-N3, which was then reacted with the surface-modified PEI-CAMSs using strain-promoted alkyne-azide cycloaddition (SPAAC) reaction to develop [68Ga]Ga-NOTA-PEI-CAMSs, a novel PET microsphere. The radiolabeling efficiency and radiochemical stability of [68Ga]Ga-NOTA-PEI-CAMSs were determined using the radio-instant thin-layer chromatography-silica gel (radio-ITLC-SG) method. The in vivo PET images were also acquired to study the in vivo stability of the radiolabeled microspheres in normal mice. The radiolabeling efficiency of [68Ga]Ga-NOTA-PEI-CAMSs was over 99%, and the microspheres exhibited high stability (92%) in human blood serum. PET images demonstrated the stability and biodistribution of the microspheres in mice for up to 2 h post injection. This study highlights the potential of biodegradable PET microspheres for preoperative imaging and targeted radionuclide therapy. Overall, the straightforward synthesis method and efficient radiolabeling technique provide a promising platform for the development of theranostic microspheres using other radionuclides such as 90Y, 177Lu, 188Re, and 64Cu.
Collapse
Affiliation(s)
- Arun Gupta
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Ji Yong Park
- Cancer Research Institute, Seoul National University, 03080 Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
| | - Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Tae Hyeon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
| | - Yujin Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Yun-Sang Lee
- Cancer Research Institute, Seoul National University, 03080 Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Shah A, Dabhade A, Bharadia H, Parekh PS, Yadav MR, Chorawala MR. Navigating the landscape of theranostics in nuclear medicine: current practice and future prospects. Z NATURFORSCH C 2024; 79:235-266. [PMID: 38807355 DOI: 10.1515/znc-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Theranostics refers to the combination of diagnostic biomarkers with therapeutic agents that share a specific target expressed by diseased cells and tissues. Nuclear medicine is an exciting component explored for its applicability in theranostic concepts in clinical and research investigations. Nuclear theranostics is based on the employment of radioactive compounds delivering ionizing radiation to diagnose and manage certain diseases employing binding with specifically expressed targets. In the realm of personalized medicine, nuclear theranostics stands as a beacon of potential, potentially revolutionizing disease management. Studies exploring the theranostic profile of radioactive compounds have been presented in this review along with a detailed explanation of radioactive compounds and their theranostic applicability in several diseases. It furnishes insights into their applicability across diverse diseases, elucidating the intricate interplay between these compounds and disease pathologies. Light is shed on the important milestones of nuclear theranostics beginning with radioiodine therapy in thyroid carcinomas, MIBG labelled with iodine in neuroblastoma, and several others. Our perspectives have been put forth regarding the most important theranostic agents along with emerging trends and prospects.
Collapse
Affiliation(s)
- Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Akshada Dabhade
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Hetvi Bharadia
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mayur R Yadav
- Department of Pharmacy Practice and Administration, Western University of Health Science, 309 E Second St, Pomona, CA, 91766, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
6
|
Jin S, Huang J, Dong Y, Hu D, Sun J, Li Z, Zhong BY, Liu Z, Zhu R, Wang G. Ultrastable PLGA-Coated 177Lu-Microspheres for Radioembolization Therapy of Hepatocellular Carcinoma. Mol Pharm 2024; 21:3407-3415. [PMID: 38822792 DOI: 10.1021/acs.molpharmaceut.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Transarterial radioembolization (TARE) is a highly effective localized radionuclide therapy that has been successfully used to treat hepatocellular carcinoma (HCC). Extensive research has been conducted on the use of radioactive microspheres (MSs) in TARE, and the development of ideal radioactive MSs is crucial for clinical trials and patient treatment. This study presents the development of a radioactive MS for TARE of HCC. These MSs, referred to as 177Lu-MS@PLGA, consist of poly(lactic-co-glycolic acid) (PLGA) copolymer and radioactive silica MSs, labeled with 177Lu and then coated with PLGA. It has an extremely high level of radiostability. Cellular experiments have shown that it can cause DNA double-strand breaks, leading to cell death. In vivo radiostability of 177Lu-MS@PLGA is demonstrated by microSPECT/CT imaging. In addition, the antitumor study has shown that TARE of 177Lu-MS@PLGA can effectively restrain tumor growth without harmful side effects. Thus, 177Lu-MS@PLGA exhibits significant potential as a radioactive MS for the treatment of HCC.
Collapse
Affiliation(s)
- Shuo Jin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jintao Huang
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yi Dong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Di Hu
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jing Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhihao Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Bin-Yan Zhong
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhiyong Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ran Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Inchingolo R, Cortese F, Pisani AR, Acquafredda F, Calbi R, Memeo R, Anagnostopoulos F, Spiliopoulos S. Selective internal radiation therapy segmentectomy: A new minimally invasive curative option for primary liver malignancies? World J Gastroenterol 2024; 30:2379-2386. [PMID: 38764771 PMCID: PMC11099395 DOI: 10.3748/wjg.v30.i18.2379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 05/11/2024] Open
Abstract
Transarterial radioembolization or selective internal radiation therapy (SIRT) has emerged as a minimally invasive approach for the treatment of tumors. This percutaneous technique involves the local, intra-arterial delivery of radioactive microspheres directly into the tumor. Historically employed as a palliative measure for liver malignancies, SIRT has gained traction over the past decade as a potential curative option, mirroring the increasing role of radiation segmentectomy. The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods, particularly well-suited for patients where surgical resection or ablation is not feasible. Radiation segmentectomy is a more selective approach, aiming to deliver high-dose radiation to one to three specific hepatic segments, while minimizing damage to surrounding healthy tissue. Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- Unit of Interventional Radiology, “F. Miulli” Regional General Hospital, Bari 70021, Italy
| | - Francesco Cortese
- Unit of Interventional Radiology, “F. Miulli” Regional General Hospital, Bari 70021, Italy
| | - Antonio Rosario Pisani
- Interdisciplinary Department of Medicine, Section of Nuclear Medicine, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Fabrizio Acquafredda
- Unit of Interventional Radiology, “F. Miulli” Regional General Hospital, Bari 70021, Italy
| | - Roberto Calbi
- Department of Radiology, General Regional Hospital “F. Miulli”, Acquaviva delle Fonti 70021, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, “F. Miulli” Regional General Hospital, Bari 70021, Italy
| | - Fotis Anagnostopoulos
- The Second Radiology Department, National and Kapodistrian University of Athens, Chaidari Athens 12461, Greece
| | - Stavros Spiliopoulos
- The Second Radiology Department, National and Kapodistrian University of Athens, Chaidari Athens 12461, Greece
| |
Collapse
|
8
|
Criss CR, Makary MS. Liver-Directed Locoregional Therapies for Neuroendocrine Liver Metastases: Recent Advances and Management. Curr Oncol 2024; 31:2076-2091. [PMID: 38668057 PMCID: PMC11049250 DOI: 10.3390/curroncol31040154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroendocrine tumors (NETs) are a heterogeneous class of cancers, predominately occurring in the gastroenteropancreatic system, which pose a growing health concern with a significant rise in incidence over the past four decades. Emerging from neuroendocrine cells, these tumors often elicit paraneoplastic syndromes such as carcinoid syndrome, which can manifest as a constellation of symptoms significantly impacting patients' quality of life. The prognosis of NETs is influenced by their tendency for metastasis, especially in cases involving the liver, where the estimated 5-year survival is between 20 and 40%. Although surgical resection remains the preferred curative option, challenges emerge in cases of neuroendocrine tumors with liver metastasis (NELM) with multifocal lobar involvement, and many patients may not meet the criteria for surgery. Thus, minimally invasive and non-surgical treatments, such as locoregional therapies, have surfaced. Overall, these approaches aim to prioritize symptom relief and aid in overall tumor control. This review examines locoregional therapies, encompassing catheter-driven procedures, ablative techniques, and radioembolization therapies. These interventions play a pivotal role in enhancing progression-free survival and managing hormonal symptoms, contributing to the dynamic landscape of evolving NELM treatment. This review meticulously explores each modality, presenting the current state of the literature on their utilization and efficacy in addressing NELM.
Collapse
Affiliation(s)
- Cody R. Criss
- Department of Internal Medicine, OhioHealth Riverside Methodist Hospital, Columbus, OH 43214, USA;
| | - Mina S. Makary
- Division of Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43240, USA
| |
Collapse
|
9
|
Kesim S, Balaban Genc ZC, Soydemir E, Baltacioglu F, Kissa TN, Ozdemir B, Ozguven S, Filizoglu N, Niftaliyeva K, Engur CO, Kostek O, Akdeniz E, Turoglu HT, Erdil TY, Cimsit C, Ones T. Evaluating therapeutic efficacy of extended shelf-life 90 Y glass microspheres in transarterial radioembolization for colorectal cancer: a quantitative FDG PET/CT analysis. Nucl Med Commun 2024; 45:268-277. [PMID: 38214074 DOI: 10.1097/mnm.0000000000001813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
OBJECTIVES There is a lack of sufficient evidence regarding the use of extended shelf-life (ExSL) Yttrium-90 ( 90 Y) glass radiomicrospheres in metastatic colorectal cancer (mCRC) patients. We aimed to investigate the efficacy of ExSL 90 Y glass radiomicrospheres with a personalized treatment approach by analyzing 18 F-FDG PET/CT quantitative parameters [metabolic tumor volume (MTV) and total lesion glycolysis (TLG)] separately before and after the treatment. METHODS A total of 93 radioembolization sessions involving 77 patients were included. Simplicit 90 Y software was utilized to perform multicompartmental voxel-based dosimetry. Adverse events were recorded using the CTCAE v5.0 criteria. The survival data were recorded in detail. RESULTS The overall disease control rate was 84.9%, with a median overall survival (OS) of 12.7 months and median progression-free survival (PFS) of 8.3 months. A statistically significant increase in treatment response rate was observed when there was an increase in absorbed tumor dose for pre-treatment unit MTV ( P = 0.005) and TLG ( P = 0.004) values. We didn't observe any additional side effects/vital risks that could be considered clinically significant. CONCLUSION Our study has provided evidence on the therapeutic effectiveness and safety in terms of dose-toxicity profile of ExSL 90 Y glass microspheres in a large cohort of mCRC patients. With a personalized treatment approach, the increase in radiation dose absorbed by the tumor has shown a significant contribution to treatment response rate, as indicated by quantitative measurements obtained through 18 F-FDG PET/CT.
Collapse
Affiliation(s)
- Selin Kesim
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | | | - Efe Soydemir
- Department of Radiology, Pendik Research and Training Hospital, Marmara University,
| | - Feyyaz Baltacioglu
- Department of Radiology, Pendik Research and Training Hospital, Marmara University,
| | - Tugba Nergiz Kissa
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Berdan Ozdemir
- Department of Radiology, Pendik Research and Training Hospital, Marmara University,
| | - Salih Ozguven
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Nuh Filizoglu
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Khanim Niftaliyeva
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Ceren Ozge Engur
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Osman Kostek
- Department of Internal Medicine, Division of Medical Oncology, Pendik Research and Training Hospital, Marmara University and
| | - Esra Akdeniz
- Department of Medical Education, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Halil Turgut Turoglu
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Tanju Yusuf Erdil
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Cagatay Cimsit
- Department of Radiology, Pendik Research and Training Hospital, Marmara University,
| | - Tunc Ones
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| |
Collapse
|
10
|
Arjuna A, Milborne B, Putra AR, Mulyaningsih TR, Setiawan H, Islam MT, Felfel R, Ahmed I. Development of samarium-doped phosphate glass microspheres for internal radiotheranostic applications. Int J Pharm 2024; 653:123919. [PMID: 38373598 DOI: 10.1016/j.ijpharm.2024.123919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Internal radiotherapy delivers radioactive sources inside the body, near to or into malignant tumours, which may be particularly effective when malignancies are not responding to external beam radiotherapy. A pure beta emitter, 90Y, is currently used for internal radiotherapy. However, theranostic radionuclide-doped microspheres can be developed by incorporating 153Sm, which emits therapeutic beta and diagnostic gamma energies. This study investigated the production of high concentrations of samarium-content doped phosphate-based glass microspheres. The glass P60 (i.e. 60P2O5-25CaO-15Na2O) was mixed with Sm2O3 at ratios of 75:25 (G75:Sm25), 50:50 (G50:Sm50) and 25:75 (G25:Sm75) and processed via flame spheroidisation. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) confirmed the microsphere uniformity with significantly high samarium content up to 44 % in G25:Sm75. Via X-ray diffraction (XRD) analysis, samarium-doped microspheres appeared to be glass-ceramic in nature. Mass-loss, size and pH changes were performed over 28 days, revealing a significant increase in samarium microsphere stability. After 15 min of neutron activation (neutron flux 3.01 × 1013 n.cm-2.s-1), the specific activity of the microspheres (G75:Sm25, G50:Sm50 and G25:Sm75) was 0.28, 0.54 and 0.58 GBq.g-1, respectively. Therefore, the samarium microspheres produced in this study provide great potential for improving internal radiotherapy treatment for liver cancer by avoiding complex procedures and using less microspheres with shorter irradiation time.
Collapse
Affiliation(s)
- Andi Arjuna
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ben Milborne
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Amal Rezka Putra
- Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN), Tangerang Selatan, Banten 15314, Indonesia
| | - Theresia Rina Mulyaningsih
- Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN), Tangerang Selatan, Banten 15314, Indonesia
| | - Herlan Setiawan
- Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN), Tangerang Selatan, Banten 15314, Indonesia
| | - Md Towhidul Islam
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Reda Felfel
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
11
|
Budzyńska A, Kubik A, Kacperski K, Pastusiak P, Kuć M, Piasecki P, Konior M, Gryziński M, Dziuk M, Iller E. PET/CT and SPECT/CT imaging of 90Y hepatic radioembolization at therapeutic and diagnostic activity levels: Anthropomorphic phantom study. PLoS One 2024; 19:e0271711. [PMID: 38421965 PMCID: PMC10903856 DOI: 10.1371/journal.pone.0271711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
PURPOSE Prior to 90Y radioembolization procedure, a pretherapy simulation using 99mTc-MAA is performed. Alternatively, a small dosage of 90Y microspheres could be used. We aimed to assess the accuracy of lung shunt fraction (LSF) estimation in both high activity 90Y posttreatment and pretreatment scans with isotope activity of ~100 MBq, using different imaging techniques. Additionally, we assessed the feasibility of visualising hot and cold hepatic tumours in PET/CT and Bremsstrahlung SPECT/CT images. MATERIALS AND METHODS Anthropomorphic phantom including liver (with two spherical tumours) and lung inserts was filled with 90Y chloride to simulate an LSF of 9.8%. The total initial activity in the liver was 1451 MBq, including 19.4 MBq in the hot sphere. Nine measurement sessions including PET/CT, SPECT/CT, and planar images were acquired at activities in the whole phantom ranging from 1618 MBq down to 43 MBq. The visibility of the tumours was appraised based on independent observers' scores. Quantitatively, contrast-to-noise ratio (CNR) was calculated for both spheres in all images. RESULTS LSF estimation. For high activity in the phantom, PET reconstructions slightly underestimated the LSF; absolute difference was <1.5pp (percent point). For activity <100 MBq, the LSF was overestimated. Both SPECT and planar scintigraphy overestimated the LSF for all activities. Lesion visibility. For SPECT/CT, the cold tumour proved too small to be discernible (CNR <0.5) regardless of the 90Y activity in the liver, while hot sphere was visible for activity >200 MBq (CNR>4). For PET/CT, the cold tumour was only visible with the highest 90Y activity (CNR>4), whereas the hot one was seen for activity >100 MBq (CNR>5). CONCLUSIONS PET/CT may accurately estimate the LSF in a 90Y posttreatment procedure. However, at low activities of about 100 MBq it seems to provide unreliable estimations. PET imaging provided better visualisation of both hot and cold tumours.
Collapse
Affiliation(s)
- Anna Budzyńska
- Department of Nuclear Medicine, Military Institute of Medicine - National Research Institute, Warsaw, Poland
- Affidea Mazovian PET-CT Medical Centre, Warsaw, Poland
| | - Agata Kubik
- Department of Nuclear Medicine, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Krzysztof Kacperski
- Department of Nuclear Medicine, Military Institute of Medicine - National Research Institute, Warsaw, Poland
- National Centre for Nuclear Research, Particle Acceleration Physics and Technology Division (TJ1), Otwock—Świerk, Poland
| | - Patrycja Pastusiak
- Department of Nuclear Medicine, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Michał Kuć
- National Centre for Nuclear Research, Radiological Metrology and Biomedical Physics Division (H2), Otwock—Świerk, Poland
| | - Piotr Piasecki
- Department of Interventional Radiology, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Marcin Konior
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock - Świerk, Poland
| | - Michał Gryziński
- National Centre for Nuclear Research, Radiological Metrology and Biomedical Physics Division (H2), Otwock—Świerk, Poland
| | - Mirosław Dziuk
- Department of Nuclear Medicine, Military Institute of Medicine - National Research Institute, Warsaw, Poland
- Affidea Mazovian PET-CT Medical Centre, Warsaw, Poland
| | - Edward Iller
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock - Świerk, Poland
| |
Collapse
|
12
|
Kwak DH, Lionberg A, Patel M, Nijhawan K, Martens S, Yu Q, Cao D, Youssef S, Ahmed O. Quantitative differences in volumetric calculations for radiation dosimetry in segmental Y90 treatment planning using hybrid angiography-CT compared with anatomic segmentation. Br J Radiol 2024; 97:353-362. [PMID: 38308040 PMCID: PMC11027260 DOI: 10.1093/bjr/tqad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE To compare treatment volumes reconstructed from hybrid Angio-CT catheter-directed infusion imaging and Couinaud anatomic model as well as the implied differences in Y-90 radiation dosimetry. METHODS Patients who underwent transarterial radioembolization (TARE) using Y-90 glass microspheres with pretreatment CT or MRI imaging as well as intraprocedural angiography-CT (Angio-CT) were analysed. Treatment volumes were delineated using both tumoural angiosomes (derived from Angio-CT) and Couinaud anatomic landmarks. Segmental and lobar treatment volumes were calculated via semi-automated contouring software. Volume and dose differences were compared by the two-tailed Student t test or Wilcoxon signed-rank test. Factors affecting volume and dose differences were assessed via simple and/or multiple variable linear regression analysis. RESULTS From September 2018 to March 2021, 44 patients underwent 45 lobar treatments and 38 patients received 56 segmental treatments. All target liver lobes and all tumours were completely included within the field-of-view by Angio-CT. Tumour sizes ranged between 1.1 and 19.5 cm in diameter. Segmental volumes and treatment doses were significantly different between the Couinaud and Angio-CT volumetry methods (316 vs 404 mL, P < .0001 and 253 vs 212 Gy, P < .01, respectively). Watershed tumours were significantly correlated with underestimated volumes by the Couinaud anatomic model (P < .001). There was a significant linear relationship between tumour diameter and percent volume difference (R2 = 0.44, P < .0001). The Couinaud model overestimated volumes for large tumours that exhibited central hypovascularity/necrosis and for superselected peripheral tumours. CONCLUSIONS Angio-CT may confer advantages over the Couinaud anatomic model and enable more accurate, personalized dosimetry for TARE. ADVANCES IN KNOWLEDGE Angio-CT may confer advantages over traditional cross-sectional and cone-beam CT imaging for selective internal radiation therapy planning.
Collapse
Affiliation(s)
- Daniel H Kwak
- Department of Radiology, Section of Interventional Radiology, The University of Chicago Medical Center, Chicago, IL 60637, United States
| | - Alex Lionberg
- Department of Radiology, Section of Interventional Radiology, The University of Chicago Medical Center, Chicago, IL 60637, United States
| | - Mikin Patel
- Department of Radiology, Section of Interventional Radiology, The University of Chicago Medical Center, Chicago, IL 60637, United States
| | - Karan Nijhawan
- Department of Radiology, Section of Interventional Radiology, The University of Chicago Medical Center, Chicago, IL 60637, United States
| | - Spencer Martens
- Department of Radiology, Section of Interventional Radiology, The University of Chicago Medical Center, Chicago, IL 60637, United States
| | - Qian Yu
- Department of Radiology, Section of Interventional Radiology, The University of Chicago Medical Center, Chicago, IL 60637, United States
| | - David Cao
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States
| | - Salma Youssef
- University College Dublin School of Medicine, Dublin 4, Ireland
| | - Osman Ahmed
- Department of Radiology, Section of Interventional Radiology, The University of Chicago Medical Center, Chicago, IL 60637, United States
| |
Collapse
|
13
|
Cicone F, Sjögreen Gleisner K, Sarnelli A, Indovina L, Gear J, Gnesin S, Kraeber-Bodéré F, Bischof Delaloye A, Valentini V, Cremonesi M. The contest between internal and external-beam dosimetry: The Zeno's paradox of Achilles and the tortoise. Phys Med 2024; 117:103188. [PMID: 38042710 DOI: 10.1016/j.ejmp.2023.103188] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023] Open
Abstract
Radionuclide therapy, also called molecular radiotherapy (MRT), has come of age, with several novel radiopharmaceuticals being approved for clinical use or under development in the last decade. External beam radiotherapy (EBRT) is a well-established treatment modality, with about half of all oncologic patients expected to receive at least one external radiation treatment over their disease course. The efficacy and the toxicity of both types of treatment rely on the interaction of radiation with biological tissues. Dosimetry played a fundamental role in the scientific and technological evolution of EBRT, and absorbed doses to the target and to the organs at risk are calculated on a routine basis. In contrast, in MRT the usefulness of internal dosimetry has long been questioned, and a structured path to include absorbed dose calculation is missing. However, following a similar route of development as EBRT, MRT treatments could probably be optimized in a significant proportion of patients, likely based on dosimetry and radiobiology. In the present paper we describe the differences and the similarities between internal and external-beam dosimetry in the context of radiation treatments, and we retrace the main stages of their development over the last decades.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy; Nuclear Medicine Unit, "Mater Domini" University Hospital, Catanzaro, Italy.
| | | | - Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Luca Indovina
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden NHSFT & Institute of Cancer Research, Sutton, UK
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland; University of Lausanne, Lausanne, Switzerland
| | - Françoise Kraeber-Bodéré
- Nantes Université, Université Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Médecine Nucléaire, F-44000 Nantes, France
| | | | - Vincenzo Valentini
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Cremonesi
- Unit of Radiation Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
14
|
Criss CR, Makary MS. Recent Advances in Image-Guided Locoregional Therapies for Primary Liver Tumors. BIOLOGY 2023; 12:999. [PMID: 37508428 PMCID: PMC10376862 DOI: 10.3390/biology12070999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Primary liver cancer is the leading cause of cancer-related deaths worldwide. with incidences predicted to rise over the next several decades. Locoregional therapies, such as radiofrequency or microwave ablation, are described as image-guided percutaneous procedures, which offer either a curative intent for early-stage hepatocellular carcinoma or bridging/downstaging for surgical resection or transplantation. Catheter-driven locoregional therapies, such as transarterial chemoembolization and radioembolization, induce tumor hypoxia, can be palliative, and improve survival for early-to-intermediate hepatocellular carcinoma and unresectable intrahepatic cholangiocarcinoma. Herein, we provide a comprehensive overview of the antineoplastic mechanisms underpinning locoregional therapies, different treatment approaches, and the current state of the literature for the efficacy of locoregional therapies for primary liver cancer. We also discuss emerging advancements, such as the adjuvant use of immunotherapies and molecular targeting agents with locoregional therapy, for the treatment of primary liver cancer.
Collapse
Affiliation(s)
- Cody R. Criss
- OhioHealth Riverside Methodist Hospital, Columbus, OH 43214, USA;
| | - Mina S. Makary
- Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Mertens A, Essing T, Minko P, Möllenhoff K, Mattes-György K, Giesel FL, Antoch G, Luedde T, Roderburg C, Loosen SH. Selective internal radiotherapy in Germany: a review of indications and hospital mortality from 2012 to 2019. J Clin Transl Res 2023; 9:123-132. [PMID: 37179793 PMCID: PMC10171316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/15/2023] Open
Abstract
Background and Aim Selective internal radiotherapy (SIRT) is a minimal invasive tumor therapy for hepatocellular carcinoma (HCC), biliary tract cancer (BTC), and liver metastasis of extrahepatic tumors. Comprehensive data on past and current trends of SIRT as well as outcome parameters such as in-hospital mortality and adverse events in Germany are missing. Methods We evaluated current clinical developments and outcomes of SIRT in Germany based on standardized hospital discharge data, provided by the German Federal Statistical Office from 2012 to 2019. Results A total of 11,014 SIRT procedures were included in the analysis. The most common indication was hepatic metastases (54.3%; HCC: 39.7%; BTC: 6%) with a trend in favor of HCC and BTC over time. Most SIRTs were performed with yttrium-90 (99.6%) but the proportion of holmium-166 SIRTs increased in recent years. There were significant differences in the mean length of hospital stay between 90Y (3.67 ± 2 days) and 166Ho (2.9 ± 1.3 days) based SIRTs. Overall in-hospital mortality was 0.14%. The mean number of SIRTs/hospital was 22.9 (SD ± 30.4). The 20 highest case volume centers performed 25.6% of all SIRTs. Conclusion Our study gives a detailed insight into indications, patient-related factors, and the incidence of adverse events as well as the overall in-hospital mortality in a large SIRT collective in Germany. SIRT is a safe procedure with low overall in-hospital mortality and a well-definable spectrum of adverse events. We report differences in the regional distribution of performed SIRTs and changes in the indications and used radioisotopes over the years. Relevance for Patients SIRT is a safe procedure with very low overall mortality and a well-definable spectrum of adverse events, particularly gastrointestinal. Complications are usually treatable or self-limiting. Acute liver failure is a potentially fatal but exceptionally rare complication. 166Ho has promising beneficial bio-physical characteristics and 166Ho-based SIRT should be further evaluated against 90Y-based SIRT as the current standard of care.
Collapse
Affiliation(s)
- Alexander Mertens
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Corresponding author: Alexander Mertens Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf Moorenstraße 5, 40225 Düsseldorf, Germany. Tel: +49 211 81 16630 Fax: +49 211 81 04489
| | - Tobias Essing
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Paracelsus Medical University, Klinikum Nürnberg, 90419 Nürnberg, Germany
| | - Peter Minko
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Düsseldorf 40225, Germany
| | - Kathrin Möllenhoff
- Mathematical Institute, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katalin Mattes-György
- Department of Nuclear Medicine, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Frederik L. Giesel
- Department of Nuclear Medicine, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Düsseldorf 40225, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven H. Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Wu M, Zhang L, Shi K, Zhao D, Yong W, Yin L, Huang R, Wang G, Huang G, Gao M. Polydopamine-Coated Radiolabeled Microspheres for Combinatorial Radioembolization and Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12669-12677. [PMID: 36854016 DOI: 10.1021/acsami.2c19829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transarterial radioembolization (TARE) is a local radionuclide therapy and is successfully used in hepatocellular carcinoma (HCC) treatment. Radioactive microspheres have been widely studied for TARE. Preparation of ideal radioactive microspheres is significant for clinical research and patient treatment. In this study, we have designed a novel multifunctional microsphere, i.e., polydopamine (PDA)-coated 177Lu-radiolabeled silica microspheres (MS) denoted as 177Lu-MS@PDA, which can be used for TARE and photothermal therapy (PTT). The radiostability of 177Lu-MS@PDA was significantly improved by coating 177Lu-MS with PDA. In addition, the coating of PDA makes microspheres have excellent photothermal performance. MicroSPECT/CT images showed that 177Lu-MS@PDA was accurately embolized and remained in the tumor during the observation time. At the time, it also showed that 177Lu-MS@PDA was very stable in vivo. Furthermore, the anti-tumor results demonstrated that TARE combined with PTT of 177Lu-MS@PDA can significantly inhibit tumor growth without obvious side effects. 177Lu-MS@PDA holds great potential as a promising radioactive microsphere for HCC.
Collapse
Affiliation(s)
- Manran Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Kexin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dongxu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Weipeng Yong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lingling Yin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruizhe Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
17
|
Wu S, Fan K, Yang Q, Chen Z, Hou Y, Zou Y, Cai W, Kang L. Smart nanoparticles and microbeads for interventional embolization therapy of liver cancer: state of the art. J Nanobiotechnology 2023; 21:42. [PMID: 36747202 PMCID: PMC9901004 DOI: 10.1186/s12951-023-01804-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The process of transcatheter arterial chemoembolization is characterized by the ability to accurately deliver chemotherapy drugs with minimal systemic side effects and has become the standard treatment for unresectable intermediate hepatocellular carcinoma (HCC). However, this treatment option still has much room for improvement, one of which may be the introduction of nanomaterials, which exhibit unique functions and can be applied to in vivo tumor imaging and therapy. Several biodegradable and multifunctional nanomaterials and nanobeads have recently been developed and applied in the locoregional treatment of hepatocellular cancer. This review explores recent developments and findings in relation to micro-nano medicines in transarterial therapy for HCC, emerging strategies to improve the efficacy of delivering nano-based medicines, and expounding prospects for clinical applications of nanomaterials.
Collapse
Affiliation(s)
- Sitong Wu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Kevin Fan
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yinghua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA.
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
18
|
A Theranostic Approach in SIRT: Value of Pre-Therapy Imaging in Treatment Planning. J Clin Med 2022; 11:jcm11237245. [PMID: 36498819 PMCID: PMC9736029 DOI: 10.3390/jcm11237245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Selective internal radiation therapy (SIRT) is one of the treatment options for liver tumors. Microspheres labelled with a therapeutic radionuclide (90Y or 166Ho) are injected into the liver artery feeding the tumor(s), usually achieving a high tumor absorbed dose and a high tumor control rate. This treatment adopts a theranostic approach with a mandatory simulation phase, using a surrogate to radioactive microspheres (99mTc-macroaggregated albumin, MAA) or a scout dose of 166Ho microspheres, imaged by SPECT/CT. This pre-therapy imaging aims to evaluate the tumor targeting and detect potential contraindications to SIRT, i.e., digestive extrahepatic uptake or excessive lung shunt. Moreover, the absorbed doses to the tumor(s) and the healthy liver can be estimated and used for planning the therapeutic activity for SIRT optimization. The aim of this review is to evaluate the accuracy of this theranostic approach using pre-therapy imaging for simulating the biodistribution of the microspheres. This review synthesizes the recent publications demonstrating the advantages and limitations of pre-therapy imaging in SIRT, particularly for activity planning.
Collapse
|
19
|
Using an Assumed Lung Mass Inaccurately Estimates the Lung Absorbed Dose in Patients Undergoing Hepatic 90Yttrium Radioembolization Therapy. Cardiovasc Intervent Radiol 2022; 45:1793-1800. [PMID: 35925379 DOI: 10.1007/s00270-022-03197-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
RATIONALE Currently, the estimated absorbed radiation dose to the lung in 90Y radioembolization therapy is calculated using an assumed 1 kg lung mass for all patients. The aim of this study was to evaluate whether using a patient-specific lung mass measurement for each patient rather than a generic, assumed 1 kg lung mass would change the estimated lung absorbed dose. METHODS A retrospective analysis was performed on 68 patients who had undergone 90Y radioembolization therapy at our institution. Individualized lung volumes were measured manually on CT scans for each patient, and these volumes were used to calculate personalized lung masses. The personalized lung masses were used to recalculate the estimated lung absorbed dose from the 90Y therapy, and this dose was compared to the estimated lung absorbed dose calculated using an assumed 1 kg lung mass. RESULTS Patient-specific lung masses were significantly different from the generic 1 kg when compared individually for each patient (p < 0.0001). Median individualized lung mass was 0.71 (IQR: 0.59, 1.02) kg overall and was significantly different from the generic 1 kg lung mass for female patients [0.59 (0.50, 0.68) kg, (p < 0.0001)] but not for male patients [0.99 (0.71, 1.14) kg, (p = 0.24)]. Median estimated lung absorbed dose was 4.48 (2.38, 11.71) Gy using a patient-specific lung mass and 3.45 (1.81, 6.68) Gy when assuming a 1 kg lung mass for all patients. The estimated lung absorbed dose was significantly different using a patient-specific versus generic 1 kg lung mass when comparing the doses individually for each patient (p < 0.0001). The difference in the estimated lung absorbed dose between the patient-specific and generic 1 kg lung mass method was significant for female patients as a subgroup but not for male patients. CONCLUSIONS The current method of assuming a 1 kg lung mass for all patients inaccurately estimates the lung absorbed dose in 90Y radioembolization therapy. Using patient-specific lung masses resulted in estimated lung absorbed doses that were significantly different from those calculated using an assumed 1 kg lung mass for all patients. A personalized dosimetry method that includes individualized lung masses is necessary and can warrant a 90Y dose reduction in some patients with lung masses smaller than 1 kg. LEVEL OF EVIDENCE Level 3, Retrospective Study.
Collapse
|
20
|
Bodei L, Herrmann K, Schöder H, Scott AM, Lewis JS. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat Rev Clin Oncol 2022; 19:534-550. [PMID: 35725926 PMCID: PMC10585450 DOI: 10.1038/s41571-022-00652-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 12/20/2022]
Abstract
Structural imaging remains an essential component of diagnosis, staging and response assessment in patients with cancer; however, as clinicians increasingly seek to noninvasively investigate tumour phenotypes and evaluate functional and molecular responses to therapy, theranostics - the combination of diagnostic imaging with targeted therapy - is becoming more widely implemented. The field of radiotheranostics, which is the focus of this Review, combines molecular imaging (primarily PET and SPECT) with targeted radionuclide therapy, which involves the use of small molecules, peptides and/or antibodies as carriers for therapeutic radionuclides, typically those emitting α-, β- or auger-radiation. The exponential, global expansion of radiotheranostics in oncology stems from its potential to target and eliminate tumour cells with minimal adverse effects, owing to a mechanism of action that differs distinctly from that of most other systemic therapies. Currently, an enormous opportunity exists to expand the number of patients who can benefit from this technology, to address the urgent needs of many thousands of patients across the world. In this Review, we describe the clinical experience with established radiotheranostics as well as novel areas of research and various barriers to progress.
Collapse
Affiliation(s)
- Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical School, New York, NY, USA
| | - Ken Herrmann
- German Cancer Consortium, University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical School, New York, NY, USA
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical School, New York, NY, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medical School, New York, NY, USA.
| |
Collapse
|
21
|
Pijeira MSO, Viltres H, Kozempel J, Sakmár M, Vlk M, İlem-Özdemir D, Ekinci M, Srinivasan S, Rajabzadeh AR, Ricci-Junior E, Alencar LMR, Al Qahtani M, Santos-Oliveira R. Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm Chem 2022; 7:8. [PMID: 35467307 PMCID: PMC9038981 DOI: 10.1186/s41181-022-00161-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and treatment. Nanomedicine, a term for the application of nanotechnology in medical and health fields, uses nanoparticles for several applications such as imaging, diagnostic, targeted cancer therapy, drug and gene delivery, tissue engineering, and theranostics. RESULTS Here, we overview the current state-of-the-art of radiolabeled nanoparticles for molecular imaging and radionuclide therapy. Nanostructured radiopharmaceuticals of technetium-99m, copper-64, lutetium-177, and radium-223 are discussed within the scope of this review article. CONCLUSION Nanoradiopharmaceuticals may lead to better development of theranostics inspired by ingenious delivery and imaging systems. Cancer nano-theranostics have the potential to lead the way to more specific and individualized cancer treatment.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Helio de Almeida, 75, Ilha Do Fundão, Rio de Janeiro, RJ, 21941906, Brazil
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Jan Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Michal Sakmár
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Derya İlem-Özdemir
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, 35040, Bornova, Izmir, Turkey
| | - Meliha Ekinci
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, 35040, Bornova, Izmir, Turkey
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Eduardo Ricci-Junior
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21940000, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Mohammed Al Qahtani
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Helio de Almeida, 75, Ilha Do Fundão, Rio de Janeiro, RJ, 21941906, Brazil.
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, State University of Rio de Janeiro, Rio de Janeiro, 23070200, Brazil.
| |
Collapse
|
22
|
Kazakov AG, Babenya JS, Ivanova MK, Vinokurov SE, Myasoedov BF. Study of 90Y Sorption with Nanodiamonds as Potential Carriers in the Radiopharmaceutical Composition. RADIOCHEMISTRY 2022. [DOI: 10.1134/s1066362222010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
d’Abadie P, Walrand S, Lhommel R, Hesse M, Borbath I, Jamar F. Optimization of the Clinical Effectiveness of Radioembolization in Hepatocellular Carcinoma with Dosimetry and Patient-Selection Criteria. Curr Oncol 2022; 29:2422-2434. [PMID: 35448170 PMCID: PMC9024927 DOI: 10.3390/curroncol29040196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Selective internal radiation therapy (SIRT) is part of the treatment strategy for hepatocellular carcinoma (HCC). Strong clinical data demonstrated the effectiveness of this therapy in HCC with a significant improvement in patient outcomes. Recent studies demonstrated a strong correlation between the tumor response and the patient outcome when the tumor-absorbed dose was assessed by nuclear medicine imaging. Dosimetry plays a key role in predicting the clinical response and can be optimized using a personalized method of activity planning (multi-compartmental dosimetry). This paper reviews the main clinical results of SIRT in HCC and emphasizes the central role of dosimetry for improving it effectiveness. Moreover, some patient and tumor characteristics predict a worse outcome, and toxicity related to SIRT treatment of advanced HCC patient selection based on the performance status, liver function, tumor characteristics, and tumor targeting using technetium-99m macro-aggregated albumin scintigraphy can significantly improve the clinical performance of SIRT.
Collapse
Affiliation(s)
- Philippe d’Abadie
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
- Correspondence: ; Tel.: +32-2764-7944
| | - Stephan Walrand
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
| | - Renaud Lhommel
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
| | - Michel Hesse
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
| | - Ivan Borbath
- Department of Gastroenterology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - François Jamar
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
| |
Collapse
|
24
|
Chen H, Teng M, Zhang H, Liang X, Cheng H, Liu G. Advanced radionuclides in diagnosis and therapy for hepatocellular carcinoma. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Wu M, Shi K, Huang R, Liu C, Yin L, Yong W, Sun J, Wang G, Zhong Z, Gao M. Facile preparation of 177Lu-microspheres for hepatocellular carcinoma radioisotope therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Cicone F, Gnesin S, Cremonesi M. Dosimetry of nuclear medicine therapies: current controversies and impact on treatment optimization. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2021; 65:327-332. [PMID: 34881850 DOI: 10.23736/s1824-4785.21.03418-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nuclear medicine therapeutic procedures have considerably expanded over the last few years, and their number is expected to grow exponentially in the future. Internal dosimetry has significantly developed as well, but has not yet been uniformly accepted as a valuable tool for prediction of therapeutic efficacy and toxicity. In this paper, we briefly summarize some of the arguments about the implementation of internal dosimetry in clinical practice. In addition, we provide a few examples of radionuclide anticancer therapies for which internal dosimetry demonstrated a significant impact on treatment optimization and patient outcome.
Collapse
Affiliation(s)
- Francesco Cicone
- PET/RM Unit, Department of Experimental and Clinical Medicine, and Neuroscience Research Center, Magna Graecia University of Catanzaro, Catanzaro, Italy - .,Unit of Nuclear Medicine, Mater Domini University Hospital, Catanzaro, Italy - .,University of Lausanne, Lausanne, Switzerland -
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Marta Cremonesi
- Unit of Radiation Research, Department of Medical Imaging and Radiation Sciences, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
27
|
Filippi L, Braat AJ. Theragnostics in primary and secondary liver tumors: the need for a personalized approach. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2021; 65:353-370. [PMID: 34881847 DOI: 10.23736/s1824-4785.21.03407-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Primary and secondary hepatic tumors have a dramatic impact in oncology. Despite many advances in diagnosis and therapy, the management of hepatic malignancies is still challenging, ranging from various loco-regional approaches to system therapies. In this scenario, theragnostic approaches, based on the administration of a radiopharmaceuticals' pair, the first labeled with a radionuclide suitable for the diagnostic phase and the second one bound to radionuclide emitting particles for therapy, is gaining more and more importance. Selective internal radiation therapy (SIRT) with microspheres labeled with 90Y or 166Ho is widely used as a loco-regional treatment for primary and secondary hepatic tumors. While 166Ho presents both gamma and beta emission and can be therefore considered a real "theragnostic" agent, for 90Y-microspheres theragnostic approach is realized at the diagnostic phase through the utilization of macroaggregates of human albumin, labeled with 99mTc as "biosimilar" agent respect to microspheres. The aim of the present review was to cover theragnostic applications of 90Y/166Ho-labeled microspheres in clinical practice. Furthermore, we report the preliminary data concerning the potential role of some emerging theragnostic biomarkers for hepatocellular carcinoma, such as glypican-3 (GPC3) and prostate specific membrane antigen (PSMA).
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Latina, Italy -
| | - Arthur J Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
28
|
Aramburu J, Antón R, Rodríguez-Fraile M, Sangro B, Bilbao JI. Computational Fluid Dynamics Modeling of Liver Radioembolization: A Review. Cardiovasc Intervent Radiol 2021; 45:12-20. [PMID: 34518913 PMCID: PMC8716346 DOI: 10.1007/s00270-021-02956-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Yttrium-90 radioembolization (RE) is a widely used transcatheter intraarterial therapy for patients with unresectable liver cancer. In the last decade, computer simulations of hepatic artery hemodynamics during RE have been performed with the aim of better understanding and improving the therapy. In this review, we introduce the concept of computational fluid dynamics (CFD) modeling with a clinical perspective and we review the CFD models used to study RE from the fluid mechanics point of view. Finally, we show what CFD simulations have taught us about the hemodynamics during RE, the current capabilities of CFD simulations of RE, and we suggest some future perspectives.
Collapse
Affiliation(s)
- Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain.
| | - Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
| | - Macarena Rodríguez-Fraile
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Liver Unit, Clínica Universidad de Navarra and CIBEREHD, 31008, Pamplona, Spain
| | - José Ignacio Bilbao
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| |
Collapse
|