1
|
Liao L, Huang J, Zhu T, Ran S, Liu Q, Wang W, Yang X. HDAC inhibitor SAHA triggers the production of previously undescribed sesquiterpenes and undergoes biotransformation by the fungus Robillarda sessilis from Verbena officinalis L. PHYTOCHEMISTRY 2025:114411. [PMID: 39855585 DOI: 10.1016/j.phytochem.2025.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Cultivation of the endophytic fungus Robillarda sessilis XL-308 with SAHA resulted in the discovery of two previously undescribed cyclonerane sesquiterpenes (1 and 2), one previously unreported norcadinane type sesquiterpene (3), and seven suberanilohydroxamic acid (SAHA) derivatives (4-10). The identification of previously undescribed compounds was confirmed through NMR spectroscopic analyses, quantum chemistry calculations, and single-crystal X-ray crystallography. Among them, compounds 1 and 2 were products of the silenced genome in XL-308 that activated by SAHA. Concurrently, SAHA underwent biotransformation because of its moderate toxicity towards this fungus. It was hypothesized that the hydroxamic acid group in SAHA triggering the self-defense mechanism of XL-308 and converting SAHA into a less toxic derivative 5.
Collapse
Affiliation(s)
- Liangxiu Liao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China
| | - Junguo Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China
| | - Tao Zhu
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China
| | - Shan Ran
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China
| | - Qingpei Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China
| | - Wenjing Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China.
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China; School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China.
| |
Collapse
|
2
|
Prapapongpan P, Vanthiya V, Kwon OS, Zakharov LN, Loesgen S, Blakemore PR. Total Synthesis of Chalaniline A: An Aminofulvene Fused Chromone from Vorinostat-Treated Fungus Chalara sp. 6661. J Org Chem 2024; 89:14601-14605. [PMID: 39310999 DOI: 10.1021/acs.joc.4c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Chalaniline A, an aminofulveno[1,2-b]chromone derivative previously isolated from a vorinostat-treated ascomycete Chalara sp., was prepared in nine steps from orcinol (3,5-dihydroxytoluene). In a key transformation, the tricyclic ring system of the target was generated by a pyrrolidine-catalyzed double annulation between α-(methylsulfinyl)-2,6-dihydroxy-4-methylacetophenone and the ketaldoester, methyl 2,5-dioxopentanoate. The resulting tertiary alcohol (coniochaetone H) was further converted to chalaniline A by operations including dehydration (to yield a hydroxyfulvene), Vilsmeier reaction, and enamine exchange.
Collapse
Affiliation(s)
- Pannaporn Prapapongpan
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Veerapattha Vanthiya
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Oh-Seok Kwon
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, Florida 32080-8610, United States
| | - Lev N Zakharov
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Sandra Loesgen
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, Florida 32080-8610, United States
| | - Paul R Blakemore
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
3
|
Generation of Aurachin Derivatives by Whole-Cell Biotransformation and Evaluation of Their Antiprotozoal Properties. Molecules 2023; 28:molecules28031066. [PMID: 36770729 PMCID: PMC9919615 DOI: 10.3390/molecules28031066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The natural product aurachin D is a farnesylated quinolone alkaloid, which is known to possess activity against the causative agent of malaria, Plasmodium spp. In this study, we show that aurachin D inhibits other parasitic protozoa as well. While aurachin D had only a modest effect on Trypanosoma brucei rhodesiense, two other trypanosomatids, T. cruzi and Leishmania donovani, were killed at low micromolar and nanomolar concentrations, respectively, in an in vitro assay. The determined IC50 values of aurachin D were even lower than those of the reference drugs benznidazole and miltefosine. Due to these promising results, we set out to explore the impact of structural modifications on the bioactivity of this natural product. In order to generate aurachin D derivatives with varying substituents at the C-2, C-6 and C-7 position of the quinolone ring system, we resorted to whole-cell biotransformation using a recombinant Escherichia coli strain capable of aurachin-type prenylations. Quinolone precursor molecules featuring methyl, methoxy and halogen groups were fed to this E. coli strain, which converted the substrates into the desired analogs. None of the generated derivatives exhibited improved antiprotozoal properties in comparison to aurachin D. Obviously, the naturally occurring aurachin D features already a privileged structure, especially for the inhibition of the causative agent of visceral leishmaniasis.
Collapse
|
4
|
Zhang Z, He X, Zhang X, Li D, Wu G, Liu Z, Niu C, Yang L, Song W, Li Z, Wang Z. Production of Multiple Talaroenamines from Penicillium malacosphaerulum via One-Pot/Two-Stage Precursor-Directed Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2022; 85:2168-2176. [PMID: 35993848 DOI: 10.1021/acs.jnatprod.2c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nineteen new talaroenamine derivatives, talaroenamines F1-F19 (1-19), were isolated from the Yellow River wetland derived Penicillium malacosphaerulum HPU-J01 by use of a one-pot/two-stage precursor-directed biosynthesis approach. During this approach, the initial precursor p-methylaniline was first used as a carrier to capture the biologically synthesized cyclohexanedione to produce talaroenamine F, and then the other aniline derivatives were employed to replace the p-methylaniline fragment of talaroenamine F to generate the final products. LC-MS analysis showed that only four compounds (2, 8, 10, and 12) could be produced by the traditional precursor-directed biosynthesis in which the aniline precursors were added simultaneously. Compound 14 was cytotoxic against the K562 cell line with an IC50 value of 2.2 μM. This work demonstrated the one-pot/two-stage precursor-directed biosynthesis could improve substrate acceptance leading to the production of diverse talaroenamines.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, People's Republic of China
| | - Xueqian He
- School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, People's Republic of China
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhenzhen Liu
- School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, People's Republic of China
| | - Chao Niu
- School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, People's Republic of China
| | - Lanping Yang
- School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, People's Republic of China
| | - Wenting Song
- School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, People's Republic of China
| | - Zhanlin Li
- School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, People's Republic of China
| | - Zhenhui Wang
- School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, People's Republic of China
| |
Collapse
|