1
|
Zhang F, Fei Q, Huang X, Yu S, Qiu R, Guan L, Wu B, Shan M. LC-MS based strategy for chemical profiling and quantification of dispensing granules of Ginkgo biloba seeds. Heliyon 2024; 10:e36909. [PMID: 39286178 PMCID: PMC11402757 DOI: 10.1016/j.heliyon.2024.e36909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Ginkgo biloba seeds have been used as a traditional Chinese medicine for hundreds of years to treat diseases such as cervicitis, cough, asthma and other lung diseases. As a novel form, the dispensing granules (GSDG) of Ginkgo biloba seeds have been widely employed in clinic. However, its chemical profiling is not yet clear, which has restricted in-depth research in many fields. In this study, a high performance liquid chromatography coupled with quardrupole time-of-flight mass spectrometry method was used for the component characteration with the help of accurate molecular weights, fragmentation pathways, reported data, literatures and even some reference standards. Furthermore, in multiple-reaction monitoring mode, a high performance liquid chromatography coupled with quadrupole linear ion trap mass spectrometry method was developed and applied for simultaneous determination of the bioactive phytochemicals. As a result, a total of 56 components in GSDG were identified including 12 amino acids, 9 organic acids, 6 nucleosides and nucleobases, 6 flavonoids, 5 vitamins, 5 terpenoid lactones, 4 carbohydrates and 9 other compounds As for quantitative analysis, glutamic acid, asparatic acid, histidine, ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, eucomic acid, N-(N-glucopyranosyl)-indoleacetylaspartate and N-(N-glucopyranosyl)-indoleacetylglutamate were selected as the analytes for quanlity marker of GSDG. After necessary validation tests, the developed quantitative method was successfully put into use for 10 batches of GSDG. In all batches, N-(N-glucopyranosyl)-indoleacetylaspartate was the richest phytochemical with the amount of 17.3-25.7 mg/g while ginkgolide J (0.0197-0.0335 mg/g) was determined to be the poorest. The study is supposed to exhibit a comprehensive chemical profiling and to provide some strong basis for preparation technology, quality control and even for action mechanism of GSDG, this novel form of Chinese medicine.
Collapse
Affiliation(s)
- Facheng Zhang
- Polifarma (Nanjing) Co., Ltd., Nanjing, 210038, PR China
| | - Qingqing Fei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiaojun Huang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Rongli Qiu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Lan Guan
- Polifarma (Nanjing) Co., Ltd., Nanjing, 210038, PR China
| | - Baoxiang Wu
- Polifarma (Nanjing) Co., Ltd., Nanjing, 210038, PR China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| |
Collapse
|
2
|
Hu J, Wu A, Guo L, Feng Y, Liu L, Sun M, Qu A, Kuang H, Xu C, Xu L. Immunological strip sensor for the rapid determination of niacin in dietary supplements and foods. J Mater Chem B 2024; 12:691-700. [PMID: 38126510 DOI: 10.1039/d3tb02209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Herein, four haptens of niacin (Vitamin B3, VB3) were designed, and after a series of experiments, it was concluded that hapten D had the best immune effect. To avoid false positives in the detection of real samples, a monoclonal antibody (mAb) against VB3 was prepared by a matrix effect-enhanced mAb screening method. The concentration of the inhibition rate reaching 50% (IC50) was 603.41 ng mL-1 and the limit of detection (LOD) using an indirect enzyme-linked immunosorbent assay (ic-ELISA) was 54.89 ng mL-1. A lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles was established to detect the concentration of VB3 in compound vitamin B tablets and infant formulas, with a visual LOD of 5 μg mL-1. Using a handheld reader, the quantitative LOD was calculated to be 0.60 μg mL-1. The contents of the compound vitamin B tablets and infant formulas were also verified by liquid chromatography. Therefore, the LFIA developed in this study can be applied to the specific identification and rapid detection of niacin in nutritional dietary supplements, thus meeting the market's demand for efficient niacin detection methods.
Collapse
Affiliation(s)
- Jialin Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yongwei Feng
- Wuxi Food Safety Inspection and Test Center, Jiangsu, 214142, China
- Technology Innovation Center of Special Food for State Market Regulation, 35-302 South Changjiang Road, Jiangsu, 214142, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihua Qu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
3
|
Han D, Shi L, Yu J, Na L. Effects of soda water on blood lipid and metabolic profiling of urine in hyperlipidemia rats using UPLC/Triple-TOF MS. Heliyon 2023; 9:e21666. [PMID: 38027945 PMCID: PMC10643294 DOI: 10.1016/j.heliyon.2023.e21666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
The effects of a natural soda water (Shi Han Quan, SHQ) on hyperlipidemia and the changes of urine metabolic profiling by metabolomics techniques were investigate. Thirty six Wistar rats weighing 160-200 g were divided into control group, hyperlipidemia (HL) group, and hyperlipidemia + SHQ water (SHQ) group. The metabolites in urine were determined using ultra high performance liquid chromatography-triple-time of flight-mass spectrometry (UPLC/Triple-TOF MS). At the end of 1 month and 3 months, the total glyceride (TG) level was significantly lower in SHQ group compared to HL group. There was no significantly difference in total cholesterol (TC) levels in HL group compared with SHQ group. The results showed that dinking SHQ water can improve the TG, but with no effects on TC. After drinking SHQ water for 3 months, the rats in different groups could be classified into different clusters according to the metabolites in urine. Total 15 important metabolites were found and correlated with disturbance of amino acid, phospholipid, fatty acid and vitamin metabolism, which suggested the changes of metabolism in the body and possible mechanism by which SHQ improved the TG. These findings provide a new insight for the prevention and control of hyperlipidemia.
Collapse
Affiliation(s)
- Dan Han
- Department of Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Litian Shi
- Harbin Greenstone Water Research Institute, Harbin, 150009, China
| | - Junjie Yu
- Department of Endocrinology, Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Lixin Na
- The College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| |
Collapse
|
4
|
Wu J, Xu Y, Yang J, Yu X, Han Z, Guo L, Huang Y, Zhang Y. Quantification of 10 B vitamins in mouse colon by LC-MS/MS: Application on breast cancer mice treated with doxorubicin. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123714. [PMID: 37059011 DOI: 10.1016/j.jchromb.2023.123714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
B vitamins play important roles in various physiological processes, including cell metabolism and DNA synthesis. The intestine is critical for the absorption and utilization of B vitamins, but few analytical methods for detecting intestinal B vitamins are currently available. In this study, we developed a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of 10 B vitamins in mouse colon tissue, including thiamin (B1), riboflavin (B2), nicotinic acid (B3), niacinamide (B3-AM), pantothenic acid (B5), pyridoxine (B6), pyridoxal 5'-phosphate (B6-5P), biotin (B7), folic acid (B9), and cyanocobalamin (B12). The method was thoroughly validated following the U.S. Food and Drug Administration (FDA) guidelines and yielded good results in terms of linearity (r2 > 0.9928), lower limit of quantification (40-600 ng/g), accuracy (88.9-119.80 %) and precision (relative standard deviation ≤ 19.71 %), recovery (87.95-113.79 %), matrix effect (91.26-113.78 %), and stability (85.65-114.05 %). Furthermore, we applied our method to profile B vitamins in the colons of mice with breast cancer after doxorubicin chemotherapy treatment, which revealed that the doxorubicin treatment led to significant colon damage and accumulation of several B vitamins including B1, B2 and B5. We also confirmed the capability of this method for quantifying B vitamins in other intestinal tissues like the ileum, jejunum, and duodenum. The newly developed method is simple, specific, and useful for targeted profiling of B vitamins in mouse colon, with a potential for future studies on the role of these micronutrients in healthy and diseased states.
Collapse
Affiliation(s)
- Jing Wu
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiahong Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyue Yu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Zhaodi Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Linling Guo
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yin Huang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China.
| | - Yuxin Zhang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210009, China.
| |
Collapse
|
5
|
Luo Y, Zhang C, Ma L, Zhang Y, Liu Z, Chen L, Wang R, Luan Y, Rao Y. Measurement of 7-dehydrocholesterol and cholesterol in hair can be used in the diagnosis of Smith-Lemli-Opitz syndrome. J Lipid Res 2022; 63:100228. [PMID: 35577137 PMCID: PMC9207299 DOI: 10.1016/j.jlr.2022.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
7-dehydrocholesterol (7-DHC) and cholesterol (CHOL) are biomarkers of Smith-Lemli-Opitz Syndrome (SLOS), a congenital autosomal recessive disorder characterized by elevated 7-DHC level in patients. Hair samples have been shown to have great diagnostic and research value, which has long been neglected in the SLOS field. In this study, we sought to investigate the feasibility of using hair for SLOS diagnosis. In the presence of antioxidants (2,6-ditert-butyl-4-methylphenol and triphenylphosphine), hair samples were completely pulverized and extracted by micro-pulverized extraction in alkaline solution or in n-hexane. After microwave-assisted derivatization with N,O-Bis(trimethylsilyl)trifluoroacetamide, the analytes were measured by GC-MS. We found that the limits of determination for 7-DHC and CHOL were 10 ng/mg and 8 ng/mg, respectively. In addition, good linearity was obtained in the range of 50-4000 ng/mg and 30-6000 ng/mg for 7-DHC and CHOL, respectively, which fully meets the requirement for SLOS diagnosis and related research. Finally, by applying the proposed method to real hair samples collected from 14 healthy infants and two suspected SLOS patients, we confirmed the feasibility of hair analysis as a diagnostic tool for SLOS. In conclusion, we present an optimized and validated analytical method for the simultaneous determination of two SLOS biomarkers using human hair.
Collapse
Affiliation(s)
- Yitao Luo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Chengqiang Zhang
- Department of Neonatology, Obstetrics and Gynecology Hospital Affiliated to Fudan University, Shanghai, PR China
| | - Li Ma
- Department of Neonatology, Shanghai Children's Hospital Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuxiao Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Zhengyuan Liu
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Li Chen
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Rui Wang
- College of Forensic Medicine, Kunming Medical University, Kunming, PR China
| | - Yujing Luan
- Institute of Forensic Science, Ministry of Public Security, Beijing, PR China.
| | - Yulan Rao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, PR China.
| |
Collapse
|
6
|
Farid MM, Ibrahim FM, Ragheb AY, Mohammed RS, Hegazi NM, Shabrawy MOEL, Kawashty SA, Marzouk MM. Comprehensive Phytochemical Characterization of Raphanus raphanistrum L.: In Vitro Antioxidant and Antihyperglycemic Evaluation. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|