1
|
Lim LX, Medina-Plaza C, Arías-Perez I, Wen Y, Neupane B, Lerno L, Guinard JX, Oberholster A. Using sensory and instrumental analysis to assess the impact of grape smoke exposure on different red wine varietals in California. Sci Rep 2024; 14:27033. [PMID: 39506001 PMCID: PMC11541719 DOI: 10.1038/s41598-024-77041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
This study is an investigation of the impact of volatile phenols (VPs) released from burning wood during wildfires on grape composition and the resulting wines. Baseline levels of VPs in grapes and sensory differences between smoke-impacted wines and non-smoke-impacted wines were determined. The differences were related to different levels of smoke taint marker compounds in different wine matrices, using modified descriptive analysis (DA), multivariate statistics, gas chromatography mass spectrometry (GC-MS) and liquid chromatography-triple quadrupole tandem mass spectrometry (LC-QqQ-MS) of the free and total VPs, and individual bound glycosides, respectively. Across two DA panels, Cabernet Sauvignon, Cabernet Franc, Petite Verdot, Merlot, Syrah, Malbec, and Zinfandel wines made from grape originating from different areas in California were evaluated. The results show sensory differences between highly smoke-impacted and non-impacted wines with wines made from highly smoke-impacted grapes characterized as smoky, barbeque, medicinal, and having a retro-nasal ashtray character. Low smoke-impact wines based on free and total VP concentrations were not significantly different from the non-impacted wines when rated through descriptive analysis. The amount of smoke exposure was the largest contributor to smoke impact determined by sensory evaluation, but the different wine matrices from different locations and varietals also played an important role in determining the level of perceived smoke impact. The results of this study will contribute to our understanding of smoke impact and how it influences wine characteristics by relating smoke marker indicator compounds to wine sensory attributes.
Collapse
Affiliation(s)
- Lik Xian Lim
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Cristina Medina-Plaza
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Ignacio Arías-Perez
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Yan Wen
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Bishnu Neupane
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Larry Lerno
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Jean-Xavier Guinard
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Anita Oberholster
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Cui Y, Riley M, Moreno MV, Cepeda MM, Perez IA, Wen Y, Lim LX, Andre E, Nguyen A, Liu C, Lerno L, Nichols PK, Schmitz H, Tagkopoulos I, Kennedy JA, Oberholster A, Siegel JB. Discovery of Potent Glycosidases Enables Quantification of Smoke-Derived Phenolic Glycosides through Enzymatic Hydrolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11617-11628. [PMID: 38728580 PMCID: PMC11117406 DOI: 10.1021/acs.jafc.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
When grapes are exposed to wildfire smoke, certain smoke-related volatile phenols (VPs) can be absorbed into the fruit, where they can be then converted into volatile-phenol (VP) glycosides through glycosylation. These volatile-phenol glycosides can be particularly problematic from a winemaking standpoint as they can be hydrolyzed, releasing volatile phenols, which can contribute to smoke-related off-flavors. Current methods for quantitating these volatile-phenol glycosides present several challenges, including the requirement of expensive capital equipment, limited accuracy due to the molecular complexity of the glycosides, and the utilization of harsh reagents. To address these challenges, we proposed an enzymatic hydrolysis method enabled by a tailored enzyme cocktail of novel glycosidases discovered through genome mining, and the generated VPs from VP glycosides can be quantitated by gas chromatography-mass spectrometry (GC-MS). The enzyme cocktails displayed high activities and a broad substrate scope when using commercially available VP glycosides as the substrates for testing. When evaluated in an industrially relevant matrix of Cabernet Sauvignon wine and grapes, this enzymatic cocktail consistently achieved a comparable efficacy of acid hydrolysis. The proposed method offers a simple, safe, and affordable option for smoke taint analysis.
Collapse
Affiliation(s)
- Youtian Cui
- Genome
Center, University of California, Davis, California 95616, United States
- VinZymes,
LLC, Davis, California 95616, United States
| | - Mary Riley
- Genome
Center, University of California, Davis, California 95616, United States
- Microbiology
Graduate Group, University of California, Davis, California 95616, United States
| | - Marcus V. Moreno
- Genome
Center, University of California, Davis, California 95616, United States
| | - Mateo M. Cepeda
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Ignacio Arias Perez
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
| | - Yan Wen
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
| | - Lik Xian Lim
- Department
of Food Science & Technology, University
of California, Davis, California 95616, United States
- UC Davis
Coffee Center, University of California, Davis, California 95616, United States
| | - Eric Andre
- Genome
Center, University of California, Davis, California 95616, United States
| | - An Nguyen
- Genome
Center, University of California, Davis, California 95616, United States
| | - Cody Liu
- Genome
Center, University of California, Davis, California 95616, United States
| | - Larry Lerno
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
- Food
Safety and Measurement Facility, University
of California, Davis, California 95616, United States
| | | | - Harold Schmitz
- March
Capital US, LLC, Davis, California 95616, United States
- T.O.P.,
LLC, Davis, California 95616, United States
- Graduate School of Management, University
of California, Davis, California 95616, United States
| | - Ilias Tagkopoulos
- Genome
Center, University of California, Davis, California 95616, United States
- Department of Computer Science, USDA/NSF
AI Institute for Next Generation
Food Systems (AIFS), University of California, Davis, California 95616, United States
- PIPA, LLC, Davis, California 95616, United States
| | | | - Anita Oberholster
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
| | - Justin B. Siegel
- Genome
Center, University of California, Davis, California 95616, United States
- Microbiology
Graduate Group, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
- Department of Biochemistry and Molecular
Medicine, University of California, Davis, California 95616, United States
| |
Collapse
|
3
|
Yang W, Zheng Z, Shi Y, Reynolds AG, Duan C, Lan Y. Volatile phenols in wine: overview of origin, formation, analysis, and sensory expression. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 38766770 DOI: 10.1080/10408398.2024.2354526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Volatile phenols impart particular aromas to wine. Due to their distinctive aroma characteristics and low sensory thresholds, volatile phenols can easily influence and modify the aroma of wine. Since these compounds can be formed in wines in various ways, it is necessary to clarify the possible sources of each volatile phenol to achieve management during the winemaking process. The sources of volatile phenols in wine are divided into berry-derived, fermentation-derived, and oak-derived. The pathways and factors influencing the formation of volatile phenols from each source are then reviewed respectively. In addition, an overview of the sensory impact of volatile phenols is given, both in terms of the aroma these volatile phenols directly bring to the wine and their contribution through aroma interactions. Finally, as an essential basis for exploring the scientific problems of volatile phenols in wine, approaches to quantitation of volatile phenols and their precursors are discussed in detail. With the advancement of analytical techniques, more details on volatile phenols have been discovered. Further exploration is worthwhile to achieve more detailed monitoring and targeted management of volatile phenols in wine.
Collapse
Affiliation(s)
- Weixi Yang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Ziang Zheng
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | | | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| |
Collapse
|
4
|
Tran TT, Jung J, Garcia L, Deshields J, Cerrato C, Penner MH, Tomasino E, Levin A, Zhao Y. Evaluation of Functional Spray Coatings for Mitigating the Uptake of Volatile Phenols by Pinot Noir Wine Grapes via Blocking, Absorption, and/or Adsorption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20222-20230. [PMID: 38054467 DOI: 10.1021/acs.jafc.3c05621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Spray coatings have shown promising potential in preventing the uptake of smoke phenols from wildfires into wine grapes. Three cellulose nanofiber-based coatings with low methoxyl pectin or varying concentrations of chitosan were made into films and their potential for blocking, absorption, or adsorption of phenols (guaiacol, m-cresol, and syringol) was evaluated using a custom-built smoke diffusion box. The coatings were also applied to Pinot noir grapes in a vineyard. GC-MS analysis for smoke phenols from headspace gases of diffusion study and extractions of films indicated that chitosan-based films can block guaiacol and syringol, and all films are able to capture m-cresol. The type of coating and application time in a vineyard did not affect (P < 0.05) physicochemical properties, size, and weight of the berries, whereas chitosan-based coatings resulted in a higher anthocyanin content of berries. This study provided new information about the key mechanisms (i.e., blocking phenols) of coatings to mitigate smoke phenol uptake in wine grapes.
Collapse
Affiliation(s)
- Trung T Tran
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jooyeoun Jung
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Lindsay Garcia
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joseph Deshields
- Department of Horticulture, Oregon State University, Corvallis, Oregon 97331, United States
- Southern Oregon Research, Oregon State University, 569 Hanley Rd., Central Point, Oregon 97502, United States
| | - Cole Cerrato
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Michael H Penner
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Elizabeth Tomasino
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Alexander Levin
- Department of Horticulture, Oregon State University, Corvallis, Oregon 97331, United States
- Southern Oregon Research, Oregon State University, 569 Hanley Rd., Central Point, Oregon 97502, United States
| | - Yanyun Zhao
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
5
|
Bates TL, Sacks GL. Rapid headspace solid-phase microextraction sheets with direct analysis in real time mass spectrometry (SPMESH-DART-MS) of derivatized volatile phenols in grape juices and wines. Anal Chim Acta 2023; 1275:341577. [PMID: 37524464 DOI: 10.1016/j.aca.2023.341577] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
Volatile phenols possess "smoky, spicy" aromas and are routinely measured in grapes, wines and other foodstuffs for quality control. Routine analyses of volatile phenols rely on gas chromatography - mass spectrometry (GC-MS), but slow throughput of GC-MS can cause challenges during times of surge demand, i.e. following 'smoke taint' events involving forest fires near vineyards. Parallel extraction of headspace volatiles onto sorbent sheets (HS-SPMESH) followed by direct analysis in real time mass spectrometry (DART-MS) is a rapid alternative to conventional GC-MS approaches. However, HS-SPMESH extraction is poorly suited for lower volatility odorants, including volatile phenols. This work reports development and validation of an HS-SPMESH-DART-MS approach for five volatile phenols (4-ethylphenol, 4-ethylguiacol, guaiacol, 4-methylguaiacol, and cresols). Prior to HS-SPMESH extraction, volatile phenols were acetylated to facilitate their extraction. A unique feature of this work was the use of d6-Ac2O as a derivatizing agent to overcome issues with isobaric interferences inherent to chromatography-free MS techniques. The use of alkaline conditions during derivatization resulted in cumulative measurement of both free and bound forms of volatile phenols. The validated HS-SPMESH-DART-MS method achieved a throughput of 24 samples in ∼60 min (including derivatization and extraction time) with low limits of detection (<1 μg L-1) and good repeatability (3-6% RSD) in grape and wine matrices. Validation experiments with smoke-tainted grape samples indicated good correlation between total (free + bound) volatile phenols measured by HS-SPMESH-DART-MS and a gold standard GC-MS method.
Collapse
Affiliation(s)
- Terry L Bates
- Department of Food Science, Cornell University, 251 Stocking Hall, Ithaca, NY, USA
| | - Gavin L Sacks
- Department of Food Science, Cornell University, 251 Stocking Hall, Ithaca, NY, USA.
| |
Collapse
|
6
|
Rodríguez EP, Li Y, Vaniya A, Shih PM, Fiehn O. Alternative Identification of Glycosides Using MS/MS Matching with an In Silico-Modified Aglycone Mass Spectra Library. Anal Chem 2023; 95:10618-10624. [PMID: 37390485 PMCID: PMC11493435 DOI: 10.1021/acs.analchem.3c00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Glycosylation of metabolites serves multiple purposes. Adding sugars makes metabolites more water soluble and improves their biodistribution, stability, and detoxification. In plants, the increase in melting points enables storing otherwise volatile compounds that are released by hydrolysis when needed. Classically, glycosylated metabolites were identified by mass spectrometry (MS/MS) using [M-sugar] neutral losses. Herein, we studied 71 pairs of glycosides with their respective aglycones, including hexose, pentose, and glucuronide moieties. Using liquid chromatography (LC) coupled to electrospray ionization high-resolution mass spectrometry, we detected the classic [M-sugar] product ions for only 68% of glycosides. Instead, we found that most aglycone MS/MS product ions were conserved in the MS/MS spectra of their corresponding glycosides, even when no [M-sugar] neutral losses were observed. We added pentose and hexose units to the precursor masses of an MS/MS library of 3057 aglycones to enable rapid identification of glycosylated natural products with standard MS/MS search algorithms. When searching unknown compounds in untargeted LC-MS/MS metabolomics data of chocolate and tea, we structurally annotated 108 novel glycosides in standard MS-DIAL data processing. We uploaded this new in silico-glycosylated product MS/MS library to GitHub to enable users to detect natural product glycosides without authentic chemical standards.
Collapse
Affiliation(s)
- Elys P Rodríguez
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616, United States
| | - Yuanyue Li
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616, United States
| | - Arpana Vaniya
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616, United States
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 97420, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616, United States
| |
Collapse
|