1
|
Weng J, Wu S, Pan Y, Lai Y, Zhu J, Jin W, Lu D, Chen Y, Yu Z, Zan X, Xia J. PH-sensitive adriamycin hydrochloride and oxaliplatin dual-loaded microspheres synergistically enhance local injections effect of hepatocellular carcinoma. Mater Today Bio 2024; 29:101311. [PMID: 39525396 PMCID: PMC11550001 DOI: 10.1016/j.mtbio.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Chemotherapy is the primary palliative treatment for advanced hepatocellular carcinoma (HCC). However, the systemic delivery is associated with the drawbacks including a high risk of adverse effects and a low efficacy. Therefore, local injection therapy may be beneficial. Nevertheless, the existing local drug-carrying microspheres(DOBM)have the characteristics of low loading and abrupt release, can not simultaneously load two drugs, and may cause unnecessary toxicity. In this study, we created the dual-loaded bovine serum albumin (BSA) microspheres (also known as DOBM), which were hollow and contained both oxaliplatin (OXA) and Adriamycin hydrochloride (DOX). In addition, this pH-sensitive drug delivery method exhibited a high drug loading capacity and was promising in breaking through biological barriers, making it a viable option for the treatment of HCC through local implantation. Based on physiochemical evaluation of BSA microspheres, they had a porous structure which was close to the surface. Adriamycin and oxaliplatin were successfully added to the surface of BSA microspheres. According to in vitro experimental results, the growth of human HCC (HCC-LM3 and PLC/PRF/5) cell lines was significantly inhibited by DOBM. Furthermore, in the subcutaneous PLC/PRF/5 HCC model, DOBM played an essential role in tumor development and change in the tumor microenvironment.
Collapse
Affiliation(s)
- Jialu Weng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Shiyi Wu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Yating Pan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Yifan Lai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinrong Zhu
- The Second School of Medicine Wenzhou Medical University, Wenzhou, 325000,China
| | - Wenzhang Jin
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Deyu Lu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Yizhang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhijie Yu
- Wenzhou Key Laboratory of Hematology, The First Afliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xinjie Zan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jinglin Xia
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
2
|
Xu T, Fan L, Wang L, Ren H, Zhang Q, Sun W. Hierarchical mesoporous silicon and albumin composite microparticles delivering DOX and FU for liver cancer treatment. Int J Biol Macromol 2024; 268:131732. [PMID: 38649078 DOI: 10.1016/j.ijbiomac.2024.131732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Drug delivery systems based on hydrogel microcarriers have shown enormous achievements in tumor treatment. Current research direction mainly concentrated on the improvement of the structure and function of the microcarriers to effectively deliver drugs for enhanced cancer treatment with decreased general toxicity. Herein, we put forward novel hierarchical mesoporous silicon nanoparticles (MSNs) and bovine serum albumin (BSA) composite microparticles (MPMSNs@DOX/FU) delivering doxorubicin (DOX) and 5-fluorouracil (FU) for effective tumor therapy with good safety. The DOX and FU could be efficiently loaded in the MSNs, which were further encapsulated into methacrylate BSA (BSAMA) microparticles by applying a microfluidic technique. When transported to the tumor area, DOX and FU will be persistently released from the MPMSNs@DOX/FU and kept locally to lessen general toxicity. Based on these advantages, MPMSNs@DOX/FU could observably kill liver cancer cells in vitro, and evidently suppress the tumor development of liver cancer nude mice model in vivo. These results suggest that such hierarchical hydrogel microparticles are perfect candidates for liver cancer treatment, holding promising expectations for impactful cancer therapy.
Collapse
Affiliation(s)
- Tianyuan Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lu Fan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Li Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| | - Qingfei Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
3
|
Ivanov I, Manolov S, Bojilov D, Marc G, Dimitrova D, Oniga S, Oniga O, Nedialkov P, Stoyanova M. Novel Flurbiprofen Derivatives as Antioxidant and Anti-Inflammatory Agents: Synthesis, In Silico, and In Vitro Biological Evaluation. Molecules 2024; 29:385. [PMID: 38257299 PMCID: PMC10818523 DOI: 10.3390/molecules29020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, we present the synthesis of five novel compounds by combining flurbiprofen with various substituted 2-phenethylamines. The synthesized derivatives underwent comprehensive characterization using techniques such as 1H- and 13C-NMR spectroscopy, UV-Vis spectroscopy, and high-resolution mass spectrometry (HRMS). Detailed HRMS analysis was performed for each of these newly created molecules. The biological activities of these compounds were assessed through in vitro experiments to evaluate their potential as anti-inflammatory and antioxidant agents. Furthermore, the lipophilicity of these derivatives was determined, both theoretically using the cLogP method and experimentally through partition coefficient (RM) measurements. To gain insights into their binding affinity, we conducted an in silico analysis of the compounds' interactions with human serum albumin (HSA) using molecular docking studies. Our findings reveal that all of the newly synthesized compounds exhibit significant anti-inflammatory and antioxidant activities, with results statistically comparable to the reference compounds. Molecular docking studies further explain the observed in vitro results, shedding light on the molecular mechanisms behind their biological activities. Using in silico method, toxicity was calculated, resulting in LD50 values. Depending on the administration route, the novel flurbiprofen derivatives show lower toxicity compared to the standard flurbiprofen.
Collapse
Affiliation(s)
- Iliyan Ivanov
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 24 “Tsar Assen” Street., 4000 Plovdiv, Bulgaria; (D.B.); (D.D.); (M.S.)
| | - Stanimir Manolov
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 24 “Tsar Assen” Street., 4000 Plovdiv, Bulgaria; (D.B.); (D.D.); (M.S.)
| | - Dimitar Bojilov
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 24 “Tsar Assen” Street., 4000 Plovdiv, Bulgaria; (D.B.); (D.D.); (M.S.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (G.M.); (O.O.)
| | - Diyana Dimitrova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 24 “Tsar Assen” Street., 4000 Plovdiv, Bulgaria; (D.B.); (D.D.); (M.S.)
| | - Smaranda Oniga
- Department of Therapeutic Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (G.M.); (O.O.)
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria;
| | - Maria Stoyanova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 24 “Tsar Assen” Street., 4000 Plovdiv, Bulgaria; (D.B.); (D.D.); (M.S.)
| |
Collapse
|
4
|
Toma CM, Imre S, Farczadi L, Ion V, Marc G. Enantioselective binding of carvedilol to human serum albumin and alpha-1-acid glycoprotein. Chirality 2023; 35:779-792. [PMID: 37221930 DOI: 10.1002/chir.23595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
Carvedilol, a highly protein-bound beta-blocker, is used in therapy as a racemic mixture of its two enantiomers that exhibit different pharmacological activity. The aim of this study was to evaluate the stereoselective nature of its binding to the two major plasma proteins: albumin and alpha-1-acid glycoprotein. The determination of the plasma protein-binding degree for carvedilol and its enantiomers was achieved using ultrafiltration for the separation of the free fraction, followed by LC-MS/MS quantification, using two different developed and validated methods in terms of stationary phase: achiral C18 type and chiral ovomucoid type. Furthermore, molecular docking methods were applied in order to investigate and to better understand the mechanism of protein-binding for S-(-)- and R-(+)-carvedilol. A difference in the binding behavior of the two enantiomers to the plasma proteins was observed when taken individually, with R-(+)-carvedilol having a higher affinity for albumin and S-(-)-carvedilol for alpha-1-acid glycoprotein. However, in the case of the racemic mixture, the binding of the S enantiomer to alpha-1-acid glycoprotein seemed to be influenced by the presence of its antipode, although no such influence was observed in the case of albumin. The results raise the question of a binding competition between the two enantiomers for alpha-1-acid glycoprotein.
Collapse
Affiliation(s)
- Camelia-Maria Toma
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Silvia Imre
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Center of Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Lenard Farczadi
- Center of Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Valentin Ion
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Center of Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Bojilov D, Manolov S, Ahmed S, Dagnon S, Ivanov I, Marc G, Oniga S, Oniga O, Nedialkov P, Mollova S. HPLC Analysis and In Vitro and In Silico Evaluation of the Biological Activity of Polyphenolic Components Separated with Solvents of Various Polarities from Helichrysum italicum. Molecules 2023; 28:6198. [PMID: 37687028 PMCID: PMC10488648 DOI: 10.3390/molecules28176198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Helichrysum italicum has piqued the interest of many researchers in recent years, mostly for its essential oil, but increasingly for its polyphenolic content as well. In the current study, we examine the polyphenolic composition of H. italicum grown in Bulgaria. The polyphenolic complex was fractionated with solvents of various polarities, including hexane, chloroform, ethyl acetate, and butanol, in order to assess the biological impact of the components. HPLC-PDA and UHPLC-MS/MS were used to examine all fractions. The green coffee fingerprint profile was employed as a "surrogate standard" in the polyphenolic components detection approach. From the UHPLC-MS/MS analysis, we identified 60 components of the polyphenolic complex such as quercetin 3-O-glucuronide, quercetin acetyl-glycoside, isorhamnetin acetyl-glycoside, isorhamnetin caffeoyl-glycoside, quercetin caffeoyl-malonyl-glycoside, isorhamnetin coumaroyl-glycoside, coumaroyl-caffeoylquinic acid, and diCQA-acetyl-derivative were first reported in the composition of H. italicum. The biological activity of the fractions was evaluated in vitro and in silico, which included the fight against oxidative stress (hydrogen peroxide scavenging activity (HPSA), hydroxyl radical scavenging activity (HRSA), metal-chelating activity (MChA)) and nitrosative (nitric oxide scavenging activity) (NOSA)), in vitro anti-inflammatory, and anti-arthritic activity. Results are presented as IC50 ± SD μg/mL. The analysis showed that the EtOAc fraction was characterized by highest HPSA (57.12 ± 1.14 μg/mL), HRSA (92.23 ± 1.10 μg/mL), MChA (5.60 ± 0.17 μg/mL), and NOSA (89.81 ± 2.09 μg/mL), while the hexane and chloroform fractions showed significantly higher in vitro anti-inflammatory activity (30.48 ± 2.33 μg/mL, 62.50 ± 1.69 μg/mL) compared to the standard ibuprofen. All three fractions showed potential anti-arthritic activity (102.93 ± 8.62 μg/mL, 108.92 ± 4.42 μg/mL, 84.19 ± 3.89 μg/mL).
Collapse
Affiliation(s)
- Dimitar Bojilov
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 24 “Tsar Assen” Street, 4000 Plovdiv, Bulgaria; (S.A.); (S.D.); (I.I.)
| | - Stanimir Manolov
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 24 “Tsar Assen” Street, 4000 Plovdiv, Bulgaria; (S.A.); (S.D.); (I.I.)
| | - Sezan Ahmed
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 24 “Tsar Assen” Street, 4000 Plovdiv, Bulgaria; (S.A.); (S.D.); (I.I.)
| | - Soleya Dagnon
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 24 “Tsar Assen” Street, 4000 Plovdiv, Bulgaria; (S.A.); (S.D.); (I.I.)
| | - Iliyan Ivanov
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 24 “Tsar Assen” Street, 4000 Plovdiv, Bulgaria; (S.A.); (S.D.); (I.I.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, RO-400010 Cluj-Napoca, Romania; (G.M.); (O.O.)
| | - Smaranda Oniga
- Department of Therapeutic Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, RO-400010 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, RO-400010 Cluj-Napoca, Romania; (G.M.); (O.O.)
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria;
| | - Silviya Mollova
- Institute of Roses, Essential and Medical Plants, Agricultural Academy, 49 Osvobozhdenie Blvd., 6100 Kazanlak, Bulgaria;
| |
Collapse
|
6
|
Ιnclusion Complexes of Magnesium Phthalocyanine with Cyclodextrins as Potential Photosensitizing Agents. Bioengineering (Basel) 2023; 10:bioengineering10020244. [PMID: 36829738 PMCID: PMC9951963 DOI: 10.3390/bioengineering10020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
In this work, the preparation of inclusion complexes, (ICs) using magnesium phthalocyanine (MgPc) and various cyclodextrins (β-CD, γ-CD, HP-β-CD, Me-β-CD), using the kneading method is presented. Dynamic light scattering (DLS) indicated that the particles in dispersion possessed mean size values between 564 to 748 nm. The structural characterization of the ICs by infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy provides evidence of the formation of the ICs. The release study of the MgPc from the different complexes was conducted at pH 7.4 and 37 °C, and indicated that a rapid release ("burst effect") of ~70% of the phthalocyanine occurred in the first 20 min. The kinetic model that best describes the release profile is the Korsmeyer-Peppas. The photodynamic therapy studies against the squamous carcinoma A431 cell line indicated a potent photosensitizing activity of MgPc (33% cell viability after irradiation for 3 min with 18 mW/cm2), while the ICs also presented significant activity. Among the different ICs, the γ-CD-MgPc IC exhibited the highest photokilling capacity under the same conditions (cell viability 26%). Finally, intracellular localization studies indicated the enhanced cellular uptake of MgPc after incubation of the cells with the γ-CD-MgPc complex for 4 h compared to MgPc in its free form.
Collapse
|
7
|
Nene LC, Nyokong T. The in-vitro proliferation-suppression of MCF-7 and HeLa cell lines mediated by differently substituted ionic phthalocyanines in sonodynamic therapy supplemented-photodynamic therapy. J Inorg Biochem 2023; 239:112084. [PMID: 36469974 DOI: 10.1016/j.jinorgbio.2022.112084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
This work focuses on the study of the effects of the ultrasonic frequency (MHz) and power (W.cm-2) on the stability, reactive oxygen species yields and cytotoxicity activities of differently substituted ionic phthalocyanines (Pcs) in sonodynamic therapy (SDT). Four ultrasonic parameters were investigated: Par I (1 MHz: 1 W.cm-2), Par II (1 MHz: 2 W.cm-2), Par III (3 MHz: 1 W.cm-2) and Par IV (3 MHz: 2 W.cm-2). A higher degradation of the Pcs was observed with increasing power at the Par II. Two reactive oxygen species (ROS) were detected in the ultrasound treated Pcs: singlet oxygen and hydroxyl radicals. Due to minimal degradation of most Pcs, Par I was chosen for SDT, photodynamic therapy (PDT), and photo-sonodynamic therapy (PSDT) against Michigan Cancer Foundation-7 and Henrietta Lacks cancer cell lines. PSDT generally showed improved therapeutic efficacies of the Pcs compared to the SDT and PDT mono treatments.
Collapse
Affiliation(s)
- Lindokuhle Cindy Nene
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
8
|
Antioxidant Activity Evaluation and Assessment of the Binding Affinity to HSA of a New Catechol Hydrazinyl-Thiazole Derivative. Antioxidants (Basel) 2022; 11:antiox11071245. [PMID: 35883736 PMCID: PMC9312188 DOI: 10.3390/antiox11071245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Polyphenols have attained pronounced attention due to their ability to provide numerous health benefits and prevent several chronic diseases. In this study, we designed, synthesized and analyzed a water-soluble molecule presenting a good antioxidant activity, namely catechol hydrazinyl-thiazole (CHT). This molecule contains 3′,4′-dihydroxyphenyl and 2-hydrazinyl-4-methyl-thiazole moieties linked through a hydrazone group with very good antioxidant activity in the in vitro evaluations performed. A preliminary validation of the CHT developing hypothesis was performed evaluating in silico the bond dissociation enthalpy (BDE) of the phenol O-H bonds, compared to our previous findings in the compounds previously reported by our group. In this paper, we report the binding mechanism of CHT to human serum albumin (HSA) using biophysical methods in combination with computational studies. ITC experiments reveal that the dominant forces in the binding mechanism are involved in the hydrogen bond or van der Waals interactions and that the binding was an enthalpy-driven process. NMR relaxation measurements were applied to study the CHT–protein interaction by changing the drug concentration in the solution. A molecular docking study added an additional insight to the experimental ITC and NMR analysis regarding the binding conformation of CHT to HSA.
Collapse
|