1
|
Wang Z, Chen G, Li H, Liu J, Yang Y, Zhao C, Li Y, Shi J, Chen H, Chen G. Zotarolimus alleviates post-trabeculectomy fibrosis via dual functions of anti-inflammation and regulating AMPK/mTOR axis. Int Immunopharmacol 2024; 142:113176. [PMID: 39303539 DOI: 10.1016/j.intimp.2024.113176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Postoperative scar formation is the primary cause of uncontrolled intraocular pressure following trabeculectomy failure. This study aimed to evaluate the efficacy of zotarolimus as an adjuvant anti-scarring agent in the experimental trabeculectomy. METHODS We performed differential gene and Gene Ontology enrichment analysis on rabbit follicular transcriptome sequencing data (GSE156781). New Zealand white Rabbits were randomly assigned into three groups: Surgery only, Surgery with mitomycin-C treatment, Surgery with zotarolimus treatment. Rabbits were euthanized 3 days or 28 days post-trabeculectomy. Pathological sections were analyzed using immunohistochemistry, immunofluorescence, and Masson staining. In vitro, primary human tenon's capsule fibroblasts (HTFs) were stimulated by transforming growth factor-β1 (TGF-β1) and treated with either mitomycin-C or zotarolimus. Cell proliferation and migration were evaluated using cell counting kit-8, cell cycle, and scratch assays. Mitochondrial membrane potential was detected with the JC-1 probe, and reactive oxygen species were detected using the DCFH-DA probe. RNA and protein expressions were quantified using RT-qPCR and immunofluorescence. RESULTS Transcriptome sequencing analysis revealed the involvement of complex immune factors and metabolic disorders in trabeculectomy outcomes. Zotarolimus effectively inhibited fibrosis, reduced proinflammatory factor release and immune cell infiltration, and improved the surgical outcomes of trabeculectomy. In TGF-β1-induced HTFs, zotarolimus reduced fibrosis, proliferation, and migration without cytotoxicity via the dual regulation of the TGF-β1/Smad2/3 and AMPK/AKT/mTOR pathways. CONCLUSION Our study demonstrates that zotarolimus mitigates fibrosis by reducing immune infiltration and correcting metabolic imbalances, offering a potential treatment for improving trabeculectomy surgical outcomes.
Collapse
Affiliation(s)
- Zhiruo Wang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Gong Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingyuan Liu
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yuanyuan Yang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Cong Zhao
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yunping Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingming Shi
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Huihui Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China; Clinical Immunology Research Center of Central South University, Changsha, China.
| | - Guochun Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
2
|
Barathan M, Zulpa AK, Ng SL, Lokanathan Y, Ng MH, Law JX. Innovative Strategies to Combat 5-Fluorouracil Resistance in Colorectal Cancer: The Role of Phytochemicals and Extracellular Vesicles. Int J Mol Sci 2024; 25:7470. [PMID: 39000577 PMCID: PMC11242358 DOI: 10.3390/ijms25137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is a significant public health challenge, with 5-fluorouracil (5-FU) resistance being a major obstacle to effective treatment. Despite advancements, resistance to 5-FU remains formidable due to complex mechanisms such as alterations in drug transport, evasion of apoptosis, dysregulation of cell cycle dynamics, tumor microenvironment (TME) interactions, and extracellular vesicle (EV)-mediated resistance pathways. Traditional chemotherapy often results in high toxicity, highlighting the need for alternative approaches with better efficacy and safety. Phytochemicals (PCs) and EVs offer promising CRC therapeutic strategies. PCs, derived from natural sources, often exhibit lower toxicity and can target multiple pathways involved in cancer progression and drug resistance. EVs can facilitate targeted drug delivery, modulate the immune response, and interact with the TME to sensitize cancer cells to treatment. However, the potential of PCs and engineered EVs in overcoming 5-FU resistance and reshaping the immunosuppressive TME in CRC remains underexplored. Addressing this gap is crucial for identifying innovative therapies with enhanced efficacy and reduced toxicities. This review explores the multifaceted mechanisms of 5-FU resistance in CRC and evaluates the synergistic effects of combining PCs with 5-FU to improve treatment efficacy while minimizing adverse effects. Additionally, it investigates engineered EVs in overcoming 5-FU resistance by serving as drug delivery vehicles and modulating the TME. By synthesizing the current knowledge and addressing research gaps, this review enhances the academic understanding of 5-FU resistance in CRC, highlighting the potential of interdisciplinary approaches involving PCs and EVs for revolutionizing CRC therapy. Further research and clinical validation are essential for translating these findings into improved patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Khusairy Zulpa
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Alam W, Tayara H, Chong KT. Unlocking the therapeutic potential of drug combinations through synergy prediction using graph transformer networks. Comput Biol Med 2024; 170:108007. [PMID: 38242015 DOI: 10.1016/j.compbiomed.2024.108007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Drug combinations are frequently used to treat cancer to reduce side effects and increase efficacy. The experimental discovery of drug combination synergy is time-consuming and expensive for large datasets. Therefore, an efficient and reliable computational approach is required to investigate these drug combinations. Advancements in deep learning can handle large datasets with various biological problems. In this study, we developed a SynergyGTN model based on the Graph Transformer Network to predict the synergistic drug combinations against an untreated cancer cell line expression profile. We represent the drug via a graph, with each node and edge of the graph containing nine types of atomic feature vectors and four bonds features, respectively. The cell lines represent based on their gene expression profiles. The drug graph was passed through the GTN layers to extract a generalized feature map for each drug pairs. The drug pair extracted features and cell-line gene expression profiles were concatenated and subsequently subjected to processing through multiple densely connected layers. SynergyGTN outperformed the state-of-the-art methods, with a receiver operating characteristic area under the curve improvement of 5% on the 5-fold cross-validation. The accuracy of SynergyGTN was further verified through three types of cross-validation tests strategies namely leave-drug-out, leave-combination-out, and leave-tissue-out, resulting in improvement in accuracy of 8%, 1%, and 2%, respectively. The Astrazeneca Dream dataset was utilized as an independent dataset to validate and assess the generalizability of the proposed method, resulting in an improvement in balanced accuracy of 13%. In conclusion, SynergyGTN is a reliable and efficient computational approach for predicting drug combination synergy in cancer treatment. Finally, we developed a web server tool to facilitate the pharmaceutical industry and researchers, as available at: http://nsclbio.jbnu.ac.kr/tools/SynergyGTN/.
Collapse
Affiliation(s)
- Waleed Alam
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea; Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
4
|
Cao R, Guo S, Min L, Li P. Roles of Rictor alterations in gastrointestinal tumors (Review). Oncol Rep 2024; 51:37. [PMID: 38186315 PMCID: PMC10807360 DOI: 10.3892/or.2024.8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Gastrointestinal tumors account for five of the top 10 causes of mortality from all cancers (colorectal, liver, stomach, esophageal and pancreatic cancer). Mammalian target of rapamycin (mTOR) signaling is commonly dysregulated in various human cancers. As a core component of the mTOR complex 2 (mTORC2), Rictor is a key effector molecule of the PI3K/Akt pathway. A high alteration rate of Rictor has been observed in gastrointestinal tumors, and such Rictor alterations are often associated with resistance to chemotherapy and related adverse clinical outcomes. However, the exact roles of Rictor in gastrointestinal tumors remain elusive. The aim of the present study was to critically discuss the following: i) Mutation and biological characteristics of Rictor in tumors with a detailed overview of Rictor in cell proliferation, angiogenesis, apoptosis, autophagy and drug resistance; ii) the role of Rictor in tumors of the digestive system, particularly colorectal, hepatobiliary, gastric, esophageal and pancreatic cancer and cholangiocarcinoma; and iii) the current status and prospects of targeted therapy for Rictor by inhibiting Akt activation. Despite the growing realization of the importance of Rictor/mTORC2 in cancer, the underlying mechanistic details remain poorly understood; this needs to change in order for the development of efficient targeted therapies and re‑sensitization of therapy‑resistant cancers to be made possible.
Collapse
Affiliation(s)
- Ruizhen Cao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| |
Collapse
|
5
|
Wang M, Li Y, Yang X, Liu Z, Wang K, Gong D, Li J. Effects of metronidazole on colorectal cancer occurrence and colorectal cancer liver metastases by regulating Fusobacterium nucleatum in mice. Immun Inflamm Dis 2023; 11:e1067. [PMID: 38018574 PMCID: PMC10683560 DOI: 10.1002/iid3.1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) represents a leading cause of cancer-related deaths. Metronidazole (MNZ) is exceedingly implicated in CRC. This study explored the roles of MNZ in mouse CRC occurrence and liver metastasis (CRLM). METHODS Male BALB/c nude mice were subjected to CRC and CRLM modeling, orally administration with MNZ (1 g/L) 1 week before modeling, and disease activity index (DAI) evaluation. Fresh stool and anal swab samples were collected on the morning of the 28th day after modeling. The relative expression of Fusobacterium nucleatum (F. nucleatum) DNA was assessed by quantitative polymerase chain reaction. After euthanasia, tumor tissues and liver tissues were separated and the tumor volume and weight change were measured. The liver tissues were stained with hematoxylin-eosin to quantitatively analyze the metastatic liver nodules. Malignant tumor biomarker Ki67 protein levels in liver tissues/DNA from stool samples were detected by immunohistochemistry/high-throughput 16S rRNA gene sequencing. Bioinformatics analysis was performed on the raw sequence data to analyze microbial community richness (Chao1 index, ACE index) and microbial community diversity (Shannon index). RESULTS The DAI and F. nucleatum DNA relative expression in feces and anal swabs of the CRC and CRLM groups were raised and repressed after MNZ intervention. MNZ repressed tumor occurrence and growth in mice to a certain extent, alleviated CRLM malignant degree (reduced liver metastases and Ki67-positive cell density/number), and suppressed CRC liver metastasis by regulating intestinal flora structure, which affected the intestinal characteristic flora of CRC and CRLM mice. CONCLUSION MNZ suppressed CRC occurrence and CRLM in mice by regulating intestinal F. nucleatum.
Collapse
Affiliation(s)
- Maijian Wang
- Department of General Surgery, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yong Li
- Department of OncologyGuizhou Provincial People's HospitalGuiyangChina
| | - Xuefeng Yang
- Department of General Surgery, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Zhenxing Liu
- Department of General Surgery, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Kai Wang
- Department of PathologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Dengmei Gong
- Institute of Zoonoses, College of Public HealthZunyi Medical UniversityZunyiChina
| | - Jida Li
- Institute of Zoonoses, College of Public HealthZunyi Medical UniversityZunyiChina
| |
Collapse
|
6
|
Shoeibi A, Karimi E, Zareian M, Oskoueian E. Enhancing Healthcare Outcomes and Modulating Apoptosis- and Antioxidant-Related Genes through the Nano-Phytosomal Delivery of Phenolics Extracted from Allium ampeloprasum. Genes (Basel) 2023; 14:1547. [PMID: 37628599 PMCID: PMC10454362 DOI: 10.3390/genes14081547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The application of nano drug delivery systems, particularly those utilizing natural bioactive compounds with anticancer properties, has gained significant attention. In this study, a novel nano-phytosome-loaded phenolic rich fraction (PRF) derived from Allium ampeloprasum L. was developed. The antitumor activity of the formulation was evaluated in BALB/c mice with TUBO colon carcinoma. The PRF-loaded nano-phytosome (PRF-NPs) exhibited a sphere-shaped structure (226 nm) and contained a diverse range of phenolic compounds. Animal trials conducted on TUBO tumor-bearing mice demonstrated that treatment with PRF-NPs at a dosage of 50 mg TPC/Kg/BW resulted in significant improvements in body weight and food intake, while reducing liver enzymes and lipid peroxidation. The expression of apoptosis-related genes, such as Bax and caspase-3, was upregulated, whereas Bcl2 was significantly downregulated (p < 0.05). Furthermore, the expression of GPx and SOD genes in the liver was notably increased compared to the control group. The findings suggest that the phytosomal encapsulation of the phenolic rich fraction derived from Allium ampeloprasum L. can enhance the bioavailability of natural phytochemicals and improve their antitumor properties. The development of PRF-NPs as a nano drug delivery system holds promise for effective breast cancer treatment.
Collapse
Affiliation(s)
- Ali Shoeibi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohsen Zareian
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Ehsan Oskoueian
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
7
|
Du Y, Cai X. Therapeutic potential of natural compounds from herbs and nutraceuticals in spinal cord injury: Regulation of the mTOR signaling pathway. Biomed Pharmacother 2023; 163:114905. [PMID: 37207430 DOI: 10.1016/j.biopha.2023.114905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yan Du
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xue Cai
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
8
|
Wardecki D, Dołowy M, Bober-Majnusz K. Assessment of Lipophilicity Parameters of Antimicrobial and Immunosuppressive Compounds. Molecules 2023; 28:molecules28062820. [PMID: 36985792 PMCID: PMC10059999 DOI: 10.3390/molecules28062820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Lipophilicity in addition to the solubility, acid-base character and stability is one of the most important physicochemical parameters of a compound required to assess the ADMET properties (absorption, distribution, metabolism, excretion and toxicity) of a bioactive molecule. Therefore, the subject of this work was to determine the lipophilicity parameters of selected antimicrobial and immunosuppressive compounds such as delafloxacin, linezolid, sutezolid, ceftazidime, everolimus and zotarolimus using thin-layer chromatography in reversed phase system (RP-TLC). The chromatographic parameters of lipophilicity (RMW) for tested compounds were determined on different stationary phases: RP18F254, RP18WF254 and RP2F254 using ethanol, acetonitrile, and propan-2-ol as organic modifiers of mobile phases used. Chromatographically established RMW values were compared with partition coefficients obtained by different computational methods (AlogPs, AClogP, AlogP, MlogP, XlogP2, XlogP3, logPKOWWIN, ACD/logP, milogP). Both cluster and principal component analysis (CA and PCA) of the received results allowed us to compare the lipophilic nature of the studied compounds. The sum of ranking differences analysis (SRD) of all lipophilicity parameters was helpful to select the most effective method of determining the lipophilicity of the investigated compounds. The presented results demonstrate that RP-TLC method may be a good tool in determining the lipophilic properties of studied substances. Obtained lipophilic parameters of the compounds can be valuable in the design of their new derivatives as efficient antimicrobial and immunosuppressive agents.
Collapse
Affiliation(s)
- Dawid Wardecki
- Faculty of Pharmaceutical Sciences in Sosnowiec, Doctoral School, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Małgorzata Dołowy
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Katarzyna Bober-Majnusz
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
9
|
Effects of different applied voltages of irreversible electroporation on prostate cancer in a mouse model. Sci Rep 2022; 12:22336. [PMID: 36572706 PMCID: PMC9792528 DOI: 10.1038/s41598-022-25258-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
As a non-thermal ablation method, irreversible electroporation (IRE) has been widely investigated in the treatment of prostate cancer. However, no consensus has been achieved on the optimal parameters of IRE for prostate cancer. Since high voltage is known to carry risks of muscle contraction and patient discomfort, it is crucial to identify the minimum but effective and safer applied voltage to inhibit tumor growth. In this study, the effect of different applied voltages of IRE on prostate cancer was evaluated in BALB/c nude mice. Mathematical simulation and measurement of the actual ablation area revealed a larger ablation area at a higher voltage. In in vivo experiment, except for the three different voltages applied, all groups received identical electrical conditions: pulse number, 180 (20 groups × 9 pulses/group); pulse width, 100 µs; pulse interval, 2 ms; distance between the electrodes, 5 mm; and electrode exposure length, 15 mm. Whilst the tumor volume initially decreased in the 500 V (1000 V/cm) and 700 V (1400 V/cm) groups and subsequently increased, only a transient increase followed by a continuous decrease until the sacrifice was observed in the 900 V (1800 V/cm) group. This result demonstrated a lasting effect of a higher applied voltage on tumor growth inhibition. The histological, immunohistochemical, and western blot findings all confirmed IRE-induced apoptosis in the treatment groups. Taken together, 900 V seemed to be the minimum applied voltage required to reduce tumor growth, though subsequent studies are anticipated to further narrow the voltage intervals and lower the minimum voltage required for tumor inhibition.
Collapse
|
10
|
Disulfiram increases the efficacy of 5-fluorouracil in organotypic cultures of colorectal carcinoma. Biomed Pharmacother 2022; 153:113465. [DOI: 10.1016/j.biopha.2022.113465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
|
11
|
Wu CF, Wu CY, Lin CF, Liu YW, Lin TC, Liao HJ, Chang GR. The anticancer effects of cyanidin 3-O-glucoside combined with 5-fluorouracil on lung large-cell carcinoma in nude mice. Biomed Pharmacother 2022; 151:113128. [PMID: 35609368 DOI: 10.1016/j.biopha.2022.113128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The haskap (Lonicera caerulea L., Caprifoliaceae) berry has been widely used in traditional medicine in Kuril Islands, Russia, Japan, and China. Cyanidin-3-O-glucoside (C3G) is the most abundant anthocyanin in haskap berries, and C3G induces antiproliferative pharmacological activity in various cancer cells. However, no study has investigated its anti-lung large-cell carcinoma (LCC) pharmacological role. Therefore, this study determined whether C3G alone or C3G combined with 5-fluorouracil (5-FU) inhibits human lung LCC. We determined the tumor growth, apoptosis, inflammation, and metastasis in the H661 lung LCC lines xenografted into BALB/c nude mice. The mice were administered saline (control), 5-FU, C3G, or both C3G and 5-FU. Relative to the control mice, those treated with C3G alone or both C3G and 5-FU exhibited impaired tumor growth; increased tumor apoptosis; decreased inflammatory cytokine levels (e.g., IL-1β, TNF-α, C-reactive protein, and IL-6); decreased inflammation-related factors, including cyclooxygenase-2 protein and nuclear factor-κB (NF-κB) mRNA; increased inhibition of NF-κB kinase α mRNA; and downregulated metastasis-related factors, such as transforming growth factor-β, CD44, epidermal growth factor receptor, and vascular endothelial growth factor. In addition, C3G alone or combined with 5-FU affected the expression of the tumor microenvironment-related factors Ki67, CD45, PDL1, and CD73. Compared with the mice treated with 5-FU or C3G alone, those treated with both C3G and 5-FU exhibited significantly impaired tumor growth, decreased tumor sizes, and increased tumor inhibition. This in vivo study demonstrated that C3G alone or combined with 5-FU may impair the growth of lung LCC and inhibit tumorigenesis. The findings indicate that C3G alone or C3G combined with 5-FU may be beneficial for treating human lung LCC.
Collapse
Affiliation(s)
- Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Guishan, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan.
| | - Ching-Yang Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Guishan, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan.
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan.
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, 300 Syuefu Road, Chiayi 60004, Taiwan.
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| |
Collapse
|
12
|
Shadbad MA, Asadzadeh Z, Derakhshani A, Hosseinkhani N, Mokhtarzadeh A, Baghbanzadeh A, Hajiasgharzadeh K, Brunetti O, Argentiero A, Racanelli V, Silvestris N, Baradaran B. A scoping review on the potentiality of PD-L1-inhibiting microRNAs in treating colorectal cancer: Toward single-cell sequencing-guided biocompatible-based delivery. Biomed Pharmacother 2021; 143:112213. [PMID: 34560556 DOI: 10.1016/j.biopha.2021.112213] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Tumoral programmed cell death ligand 1 (PD-L1) has been implicated in the immune evasion and development of colorectal cancer. Although monoclonal immune checkpoint inhibitors can exclusively improve the prognosis of patients with microsatellite instability-high (MSI-H) and tumor mutational burden-high (TMB-H) colorectal cancer, specific tumor-suppressive microRNAs (miRs) can regulate multiple oncogenic pathways and inhibit the de novo expression of oncoproteins, like PD-L1, both in microsatellite stable (MSS) and MSI-H colorectal cancer cells. This scoping review aimed to discuss the currently available evidence regarding the therapeutic potentiality of PD-L1-inhibiting miRs for colorectal cancer. For this purpose, the Web of Science, Scopus, and PubMed databases were systematically searched to obtain peer-reviewed studies published before 17 March 2021. We have found that miR-191-5p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, miR-140-3p, and miR-15b-5p can inhibit tumoral PD-L1 in colorectal cancer cells. Besides inhibiting PD-L1, miR-140-3p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, and miR-15b-5p can substantially reduce tumor migration, inhibit tumor development, stimulate anti-tumoral immune responses, decrease tumor viability, and enhance the chemosensitivity of colorectal cancer cells regardless of the microsatellite state. Concerning the specific, effective, and safe delivery of these miRs, the single-cell sequencing-guided biocompatible-based delivery of these miRs can increase the specificity of miR delivery, decrease the toxicity of traditional nanoparticles, transform the immunosuppressive tumor microenvironment into the proinflammatory one, suppress tumor development, decrease tumor migration, and enhance the chemosensitivity of tumoral cells regardless of the microsatellite state.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | | | - Oronzo Brunetti
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy
| | - Antonella Argentiero
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Nicola Silvestris
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy; Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|