1
|
Deng H, Liu F, He J. The Effect of Inorganic Filler Content on the Properties of BPA-Free Bulk-Fill Dental Resin Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5040. [PMID: 39459745 PMCID: PMC11509294 DOI: 10.3390/ma17205040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
This study aimed to enhance the performance of dental resin composites (DRCs) by increasing the content of inorganic fillers while addressing potential health risks associated with Bisphenol A (BPA). To achieve this, the BPA-based resin monomer Bis-GMA was replaced with BPA-free Bis-EFMA. The study then explored the impact of varying inorganic filler contents on the physiochemical properties of Bis-EFMA-based bulk-fill dental resin composites (BF-DRCs). Four distinct Bis-EFMA-based BF-DRCs were formulated, each with different inorganic filler contents ranging from 70 wt% to 76 wt%. The study tested the depth of cure (DOC), double-bond conversion (DC), water sorption (WS), solubility (SL), and cytotoxicity of the system. It notably investigated the effects of increasing filler content on mechanical properties through flexural strength (FS), flexural modulus (FM), Vickers microhardness (VHN), and wear resistance, as well as the impact on polymerization shrinkage, including volumetric shrinkage (VS) and shrinkage stress (SS). To assess the commercial application potential of Bis-EFMA-based BF-DRC, the research used the commercially available BF-DRC Filtek Bulk-Fill Posterior (FBF) as a control. The results indicated that a higher filler content did not affect the DOC of Bis-EFMA-based BF-DRCs. Inorganic fillers at higher concentrations significantly enhanced overall mechanical properties while significantly reducing volumetric shrinkage (VS; p < 0.05). When the concentration of inorganic fillers in the resin system reached 76 wt%, most of the performance of the Bis-EFMA-based BF-DRC surpassed that of the commercial control FBF, except for FS, FM, and SS. These findings highlight the potential of Bis-EFMA-based BF-DRC as a long-term restorative material for dental applications.
Collapse
Affiliation(s)
| | | | - Jingwei He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.D.); (F.L.)
| |
Collapse
|
2
|
Tsertsidou V, Mourouzis P, Dionysopoulos D, Pandoleon P, Tolidis K. Fracture Resistance of Class II MOD Cavities Restored by Direct and Indirect Techniques and Different Materials Combination. Polymers (Basel) 2023; 15:3413. [PMID: 37631470 PMCID: PMC10458958 DOI: 10.3390/polym15163413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to evaluate the fracture resistance of class II MOD cavities restored using different techniques and materials. Sixty extracted maxillary molars were selected and standardized class II MOD cavities were prepared using a custom-made paralleling device. The specimens were divided into four groups based on the restoration technique used: Group 1 (direct resin composite), Group 2 (short-fiber-reinforced composite resin), Group 3 (composite polyethylene fiber reinforcement), and Group 4 (CAD/CAM resin inlays). Fracture resistance was assessed for each group after thermocycling aging for 10,000 cycles. The mode of fracture was assigned to five types using Burke's classification. To compare the fracture force among the tested materials, a paired sample t-test was performed. The significance level for each test was set at p < 0.05. Significant differences in fracture resistance were observed among the different restoration techniques. CAD/CAM inlays (2166 ± 615 N), short-fiber-reinforced composite resin (2471 ± 761 N), and composite polyethylene fiber reinforcement (1923 ± 492 N) showed superior fracture resistance compared to the group restored with direct resin composite (1242 ± 436 N). The conventional resin composite group exhibited the lowest mean fracture resistance. The choice of restoration material plays a critical role in the clinical survival of large MOD cavities. CAD/CAM inlays and fiber-reinforced composites offer improved fracture resistance, which is essential for long-term success in extensive restorations.
Collapse
Affiliation(s)
- Vasiliki Tsertsidou
- Department of Dental Tissues Pathology and Therapeutics, Division of Operative Dentistry, Faculty of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.T.); (D.D.); (K.T.)
| | - Petros Mourouzis
- Department of Dental Tissues Pathology and Therapeutics, Division of Operative Dentistry, Faculty of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.T.); (D.D.); (K.T.)
| | - Dimitrios Dionysopoulos
- Department of Dental Tissues Pathology and Therapeutics, Division of Operative Dentistry, Faculty of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.T.); (D.D.); (K.T.)
| | - Panagiotis Pandoleon
- Department of Prosthodontics, Faculty of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Kosmas Tolidis
- Department of Dental Tissues Pathology and Therapeutics, Division of Operative Dentistry, Faculty of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.T.); (D.D.); (K.T.)
| |
Collapse
|
3
|
Wuersching SN, Högg C, Kohl L, Reichl FX, Hickel R, Kollmuss M. Leaching components and initial biocompatibility of novel bioactive restorative materials. Dent Mater 2023; 39:293-304. [PMID: 36754734 DOI: 10.1016/j.dental.2023.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Bioactive restorative materials were developed on the premise that direct restorations should not only serve the purpose of reconstructing dental hard tissue defects but also exhibit biological features that prevent secondary caries development, without having adverse effects on the host cells. This study focuses on assessing the in vitro biocompatibility of two novel bioactive restorative materials. METHODS Specimens of the bioactive restorative materials, Cention Forte (CF) and ACTIVA BioACTIVE RESTORATIVE (AB), a glass ionomer cement/glass hybrid (EQUIA Forte HT, EF) and an established nanohybrid composite (Venus Diamond, VD) were produced and finished. The specimens were eluted in water and methanol and the resulting eluates were analyzed via gas chromatography-mass spectrometry. hGF-1 cells were exposed to eluates prepared in cell culture medium. Cellular ATP levels, oxidized glutathione concentration, caspase-3/7 activity and the inflammatory response (IL-6 and PGE2 levels) were determined. Microscopic images were taken to examine the cell morphology. RESULTS Methyl methacrylate and 2-Hydroxyethyl methacrylate were the main monomers detected in CF and AB eluates. All materials inhibited cell proliferation and led to significantly reduced ATP-levels. The cells exhibited a healthy morphology in the presence of CF and AB. Cells exposed to VD showed increased oxidized glutathione levels. Only EF led to enhanced caspase-3/7 activity. CF and AB caused IL-6 levels to increase, while EF and AB led to enhanced PGE2 levels. SIGNIFICANCE CF and AB are promising materials from a biological point of view and seem to have improved bioactive properties compared to glass ionomer cements.
Collapse
Affiliation(s)
- Sabina Noreen Wuersching
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, 80336 Munich, Germany. .-muenchen.de
| | - Christof Högg
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, 80336 Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Lisa Kohl
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, 80336 Munich, Germany
| | - Franz-Xaver Reichl
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, 80336 Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, 80336 Munich, Germany
| | - Maximilian Kollmuss
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, 80336 Munich, Germany
| |
Collapse
|
4
|
Pelepenko LE, Marciano MA, Francati TM, Bombarda G, Bessa Marconato Antunes T, Sorrentino F, Martin RA, Boanini E, Cooper PR, Shelton RM, Camilleri J. Can strontium replace calcium in bioactive materials for dental applications? J Biomed Mater Res A 2022; 110:1892-1911. [PMID: 35770805 PMCID: PMC9796236 DOI: 10.1002/jbm.a.37421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 01/01/2023]
Abstract
The substitution of calcium with strontium in bioactive materials has been promising but there has been some concern over the material instability and possible toxicity. The aim of this research was the synthesis and characterization of calcium and strontium substituted bioactive materials and assessment of interactions with local tissues and peripheral elemental migration in an animal model. A bioactive glass, hydroxyapatite and hydraulic calcium silicate with 50% or 100% calcium substitution with strontium were developed and the set materials were characterized immediately after setting and after 30 and 180-days in solution. Following subcutaneous implantation, the local (tissue histology, elemental migration) and systemic effects (elemental deposition after organ digestion) were assessed. The strontium-replaced silicate cements resulted in the synthesis of partially substituted phases and strontium leaching at all-time points. The strontium silicate implanted in the animal model could not be retrieved in over half of the specimens showing the high rate of material digestion. Tissue histology showed that all materials caused inflammation after 30 days of implantation however this subsided and angiogenesis occurred after 180 days. Strontium was not detected in the local tissues or the peripheral organs while all calcium containing materials caused calcium deposition in the kidneys. The tricalcium silicate caused elemental migration of calcium and silicon in the local tissues shown by the elemental mapping but no deposition of calcium was identified in the peripheral organs verified by the assessment of the digested tissues. Strontium can substitute calcium in bioactive materials without adverse local or systemic effects.
Collapse
Affiliation(s)
| | | | | | - Gabriela Bombarda
- School of Dentistry of PiracicabaState University of CampinasPiracicabaBrazil
| | | | | | | | - Elisa Boanini
- Department of Chemistry, “Giacomo Ciamician”University of BolognaBolognaItaly
| | - Paul Roy Cooper
- Department of Oral ScienceSir John Walsh Research Institute, University of OtagoDunedinNew Zealand
| | - Richard Michael Shelton
- School of Dentistry, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Josette Camilleri
- School of Dentistry, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
5
|
Paolone G, Mazzitelli C, Josic U, Scotti N, Gherlone E, Cantatore G, Breschi L. Modeling Liquids and Resin-Based Dental Composite Materials—A Scoping Review. MATERIALS 2022; 15:ma15113759. [PMID: 35683057 PMCID: PMC9181045 DOI: 10.3390/ma15113759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023]
Abstract
Several lubricant materials can be used to model resin-based composites (RBCs) during restorative procedures. Clinically, instruments or brushes are wet with bonding agents (BAs) or modeling liquids (MLs) for sculpturing purposes. However, a knowledge gap exists on their effects on the mechanical properties of RBCs, requiring greater insight. Five databases were searched, including 295 in vitro studies on the use of lubricant materials for modeling RBCs during restorative procedures. Only articles in the English language were included, with no limits on the publication date. The last piece of research was dated 24 March 2022. In total, 16 studies were included in the review process, together with a paper retrieved after screening references. A total of 17 BAs and 7 MLs were investigated. Tensile (n = 5), flexural strength (n = 2), water sorption (n = 2), color stability (n = 8) and translucency (n = 3), micro-hardness (n = 4), roughness (n = 3), degree of conversion (n = 3), and monomer elution (n = 2) tests were carried out. In general, a maximum of 24 h of artificial storage was performed (n = 13), while four papers tested the specimens immediately. The present review identifies the possibilities and limitations of modeling lubricants used during restorative procedures on the mechanical, surface, and optical properties of RBCs. Clinicians should be aware that sculpturing RBCs with modeling resins might influence the composite surface properties in a way that is material-dependent.
Collapse
Affiliation(s)
- Gaetano Paolone
- Dental School, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy; (E.G.); (G.C.)
- Correspondence:
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater University of Bologna, Via S. Vitale 59, 40125 Bologna, Italy; (C.M.); (U.J.); (L.B.)
| | - Uros Josic
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater University of Bologna, Via S. Vitale 59, 40125 Bologna, Italy; (C.M.); (U.J.); (L.B.)
| | - Nicola Scotti
- Department of Surgical Sciences, Dental School Lingotto, University of Turin, Via Nizza 230, 10126 Turin, Italy;
| | - Enrico Gherlone
- Dental School, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy; (E.G.); (G.C.)
| | - Giuseppe Cantatore
- Dental School, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy; (E.G.); (G.C.)
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater University of Bologna, Via S. Vitale 59, 40125 Bologna, Italy; (C.M.); (U.J.); (L.B.)
| |
Collapse
|
6
|
De Angelis F, Sarteur N, Buonvivere M, Vadini M, Šteffl M, D'Arcangelo C. Meta-analytical analysis on components released from resin-based dental materials. Clin Oral Investig 2022; 26:6015-6041. [PMID: 35870020 PMCID: PMC9525379 DOI: 10.1007/s00784-022-04625-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Resin-based materials are applied in every branch of dentistry. Due to their tendency to release substances in the oral environment, doubts have been raised about their actual safety. This review aims to provide a comprehensive analysis of the last decade literature regarding the concentrations of elutable substances released from dental resin-based materials in different type of solvents. MATERIALS AND METHODS All the literature published on dental journals between January 2010 and April 2022 was searched using international databases (PubMed, Scopus, Web of Science). Due to strict inclusion criteria, only 23 papers out of 877 were considered eligible. The concentration of eluted substances related to surface and volume of the sample was analyzed, considering data at 24 h as a reference. The total cumulative release was examined as well. RESULTS The most eluted substances were HEMA, TEGDMA, and BPA, while the less eluted were Bis-GMA and UDMA. Organic solvents caused significantly higher release of substances than water-based ones. A statistically significant inverse correlation between the release of molecules and their molecular mass was observed. A statistically significant positive correlation between the amount of released molecule and the specimen surface area was detected, as well as a weak positive correlation between the release and the specimen volume. CONCLUSIONS Type of solvent, molecular mass of eluates, and specimen surface and volume affect substances release from materials. CLINICAL RELEVANCE It could be advisable to rely on materials based on monomers with a reduced elution tendency for clinical procedures.
Collapse
Affiliation(s)
- Francesco De Angelis
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy.
| | - Nela Sarteur
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Matteo Buonvivere
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Mirco Vadini
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Michal Šteffl
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Camillo D'Arcangelo
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| |
Collapse
|