1
|
Ojha MD, Yadav A, Kongkham B, Prabhakaran D, Gholap S, Kumar V, Inampudi KK, Hariprasad P. Polyphasic approaches to identify and understand α-glucosidase inhibitory potential of secondary metabolites of Withania coagulans fruit. Int J Biol Macromol 2024; 280:135718. [PMID: 39293614 DOI: 10.1016/j.ijbiomac.2024.135718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Withania coagulans (WC) is used in traditional and Ayurveda medicine to treat various ailments, including diabetes. Our investigation found that WC fruit hexane extract effectively suppresses α-glucosidase activity (IC50 = 0.013 mg/ml, Ki = 0.012 mg/ml). The purified molecule has an IC50 of 0.004 mg/ml and Ki of 0.0037 mg/ml. FTIR examination indicates distinctive peaks at 3500, 2900, 1770, and 1500 cm-1 corresponding to functional groups OH bending, CH stretching, CO stretching, and CO stretching. GCMS analysis reveals plant secondary metabolites (PSM) such as n-hexadecenoic acid and methyl 9,10-octadecadienoate. NMR confirms the existence of olefinic fatty acids. The bioactive fraction recorded a non-competitive mode of inhibition of α-glucosidase activity. The cytotoxicity exhibited against HELA cell was IC50 0.4 mg/ml and found positive in inhibiting the growth of Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa. Additionally, ensemble docking and molecular dynamic simulation showed that, out of the four PSMs examined, methyl 12,13-tetradecadienoate interacted with the α-glucosidase enzyme's allosteric site (BE -128.78 kJ/mol) and changed the configurations of the catalytic sites, as demonstrated by the enzyme's decreased affinity for isomaltose. The study found that PSMs from WC fruit may inhibit α-glucosidase, making them viable candidates for antidiabetic medication development.
Collapse
Affiliation(s)
- Monu Dinesh Ojha
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ajay Yadav
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhani Kongkham
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Duraivadivel Prabhakaran
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shivajirao Gholap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vikas Kumar
- Department of Biophysics, All Indian Institute of Medical Science, New Delhi 110016, India
| | - Krishna K Inampudi
- Department of Biophysics, All Indian Institute of Medical Science, New Delhi 110016, India
| | - P Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Alharthy RD, Khalid S, Fatima S, Ullah S, Khan A, Mali SN, Jawarkar RD, Dhabarde SS, Kashtoh H, Taslimi P, Al-Harrasi A, Shafiq Z, Boshta NM. Synthesis of the chromone-thiosemicarbazone scaffold as promising α-glucosidase inhibitors: An in vitro and in silico approach toward antidiabetic drug design. Arch Pharm (Weinheim) 2024; 357:e2400140. [PMID: 38687119 DOI: 10.1002/ardp.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Diabetes is a serious metabolic disorder affecting individuals of all age groups and prevails globally due to the failure of previous treatments. This study aims to address the most prevalent form of type 2 diabetes mellitus (T2DM) by reporting on the design, synthesis, and in vitro as well as in silico evaluation of chromone-based thiosemicarbazones as potential α-glucosidase inhibitors. In vitro experiments showed that the tested compounds were significantly more potent than the standard acarbose, with the lead compound 3n exhibiting an IC50 value of 0.40 ± 0.02 μM, ~2183-fold higher than acarbose having an IC50 of 873.34 ± 1.67 μM. A kinetic mechanism analysis demonstrated that compound 3n exhibited reversible inhibition of α-glucosidase. To gain deeper insights, in silico molecular docking, pharmacokinetics, and molecular dynamics simulations were conducted for the investigation of the interactions, orientation, stability, and conformation of the synthesized compounds within the active pocket of α-glucosidase.
Collapse
Affiliation(s)
- Rima D Alharthy
- Department of Chemistry, Science & Arts College, Rabigh Branch, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Sana Khalid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Shamool Fatima
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Suraj N Mali
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | | | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Nader M Boshta
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koam, Egypt
| |
Collapse
|
3
|
Feng Y, Ren Y, Zhang X, Yang S, Jiao Q, Li Q, Jiang W. Metabolites of traditional Chinese medicine targeting PI3K/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front Pharmacol 2024; 15:1373711. [PMID: 38799166 PMCID: PMC11116707 DOI: 10.3389/fphar.2024.1373711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin resistance, with high morbidity and mortality worldwide. Due to the tightly intertwined connection between the insulin resistance pathway and the PI3K/AKT signaling pathway, regulating the PI3K/AKT pathway and its associated targets is essential for hypoglycemia and the prevention of type 2 diabetes mellitus. In recent years, metabolites isolated from traditional Chinese medicine has received more attention and acceptance for its superior bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo and in vitro studies have revealed that the metabolites present in traditional Chinese medicine possess better bioactivities in regulating the balance of glucose metabolism, ameliorating insulin resistance, and preventing type 2 diabetes mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the literature related to the metabolites of traditional Chinese medicine improving IR and possessing therapeutic potential for type 2 diabetes mellitus by targeting the PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the metabolites of traditional Chinese medicine in type 2 diabetes mellitus and elaborating on the significant role of the PI3K/AKT signaling pathway in type 2 diabetes mellitus. In order to provide reference for clinical prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Xiao D, Lu L, Liang B, Xiong Z, Xu X, Chen WH. Identification of 1,3,4-oxadiazolyl-containing β-carboline derivatives as novel α-glucosidase inhibitors with antidiabetic activity. Eur J Med Chem 2023; 261:115795. [PMID: 37688939 DOI: 10.1016/j.ejmech.2023.115795] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
In this study, we designed and synthesized a novel class of 1,3,4-oxadiazolyl-containing β-carboline derivatives, i.e., compounds f1∼f35 as potential α-glucosidase inhibitors. All the synthesized compounds possessed outstanding α-glucosidase inhibitory activity with the IC50 values in the range of 3.07-15.49 μM, representing that they are 36∼183-fold more active than a positive control, acarbose (IC50 = 564.28 μM). Among them, compound f26 exhibited the highest α-glucosidase inhibitory activity (IC50 = 3.07 μM) and was demonstrated to function as a reversible and noncompetitive inhibitor. Mechanistic studies by means of 3D fluorescence spectra, CD spectra and molecular docking suggested that complexation of compound f26 with α-glucosidase through hydrogen bonds and hydrophobic interactions, led to changes in the conformation and secondary strictures of α-glucosidase and further the inhibition of the enzymatic activity. In vivo results showed that oral administration of compound f26 (50 mg/kg/day) could obviously reduce the levels of fasting blood glucose and improve glucose tolerance and dyslipidemia in diabetic mice. The present findings suggest that compound f26 is exploitable as a potential lead compound for the development of new α-glucosidase inhibitors with antidiabetic activity.
Collapse
Affiliation(s)
- Di Xiao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Li Lu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Bingwen Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Zhuang Xiong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
5
|
Li T, Ling J, Du X, Zhang S, Yang Y, Zhang L. Exploring the underlying mechanisms of fisetin in the treatment of hepatic insulin resistance via network pharmacology and in vitro validation. Nutr Metab (Lond) 2023; 20:51. [PMID: 37996895 PMCID: PMC10666360 DOI: 10.1186/s12986-023-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE To characterize potential mechanisms of fisetin on hepatic insulin resistance (IR) using network pharmacology and in vitro validation. METHODS Putative targets of fisetin were retrieved from the Traditional Chinese Medicine Systems Pharmacology database, whereas the potential genes of hepatic IR were obtained from GeneCards database. A protein-protein interaction (PPI) network was constructed according to the intersection targets of fisetin and hepatic IR using the Venn diagram. The biological functions and potential pathways related to genes were determined using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Cell experiments were also conducted to further verify the mechanism of fisetin on hepatic IR. RESULTS A total of 118 potential targets from fisetin were associated with hepatic IR. The areas of nodes and corresponding degree values of TP53, AKT1, TNF, IL6, CASP3, CTNNB1, JUN, SRC, epidermal growth factor receptor (EGFR), and HSP90AA1 were larger and could be easily found in the PPI network. Furthermore, GO analysis revealed that these key targets were significantly involved in multiple biological processes that participated in oxidative stress and serine/threonine kinase activity. KEGG enrichment analysis showed that the PI3K/AKT signaling pathway was a significant pathway involved in hepatic IR. Our in vitro results demonstrated that fisetin treatment increased the expressions of EGFR and IRS in HepG2 and L02 cells under normal or IR conditions. Western blot results revealed that p-AKT/AKT levels were significantly up-regulated, suggesting that fisetin was involved in the PI3K/AKT signaling pathway to regulate insulin signaling. CONCLUSION We explored the pharmacological actions and the potential molecular mechanism of fisetin in treating hepatic IR from a holistic perspective. Our study lays a theoretical foundation for the development of fisetin for type 2 diabetes.
Collapse
Affiliation(s)
- Tian Li
- Metabilic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, China
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Junjun Ling
- Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Xingrong Du
- Metabilic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, China
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
| | - Siyu Zhang
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
| | - Yan Yang
- Chongqing Tongnan NO.1 Middle School, Tongnan, 402660, China
| | - Liang Zhang
- Metabilic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, China.
- Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China.
| |
Collapse
|
6
|
Fan M, Yang W, Peng Z, He Y, Wang G. Chromone-based benzohydrazide derivatives as potential α-glucosidase inhibitor: Synthesis, biological evaluation and molecular docking study. Bioorg Chem 2023; 131:106276. [PMID: 36434950 DOI: 10.1016/j.bioorg.2022.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
In order to find new α-glucosidase inhibitors with high efficiency and low toxicity, novel chromone-based benzohydrazide derivatives 6a-6s were synthesized and characterized through 1H NMR, 13C NMR, and HRMS. All the new synthesized compounds were tested for inhibitory activities against α-glucosidase. Compounds 6a-6s with IC50 values ranging from 4.51 ± 0.09 to 27.21 ± 0.83 μM, showed a potential α-glucosidase inhibitory activity as compared to the positive control (acarbose: IC50 = 790.40 ± 0.91 μM). Compound 6i exhibited the highest α-glucosidase inhibitory activity with an IC50 value of 4.51 ± 0.09 μM. Theinteractionbetween α-glucosidase and 6i was further confirmed by enzyme kinetic, fluorescence quenching, circular dichroism, and molecular docking study. In vivo experiment showed that 6i could suppress the rise of blood glucose levels after sucrose loading. The cytotoxicity result indicated that 6i exhibited low cytotoxicity in vitro.
Collapse
Affiliation(s)
- Meiyan Fan
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Wei Yang
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Yan He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
7
|
Khaisaat S, Chancharoensin S, Wipatanawin A, Suphantharika M, Payongsri P. Influence of Degree of Polymerization of Low-Molecular-Weight Chitosan Oligosaccharides on the α-Glucosidase Inhibition. Molecules 2022; 27:molecules27238129. [PMID: 36500221 PMCID: PMC9740910 DOI: 10.3390/molecules27238129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Chitosan oligosaccharide (COS) is a bioactive compound derived from marine by-products. COS consumption has been demonstrated to lower the risk of diabetes. However, there are limited data on the inhibitory effect of low-molecular-weight COSs with different degrees of polymerization (DP) on α-glucosidase. This study investigates the α-glucosidase inhibitory activity of two low-molecular-weight COSs, i.e., S-TU-COS with DP2−4 and L-TU-COS with DP2−5, both of which have different molecular weight distributions. The inhibition constants of the inhibitors binding to free enzymes (Ki) and an enzyme−substrate complex (Kii) were investigated to elucidate the inhibitory mechanism of COSs with different chain lengths. The kinetic inhibition model of S-TU-COS showed non-completive inhibition results which are close to the uncompetitive inhibition results with Ki and Kii values of 3.34 mM and 2.94 mM, respectively. In contrast, L-TU-COS showed uncompetitive inhibition with a Kii value of 5.84 mM. With this behavior, the IC50 values of S-TU-COS and L-TU-COS decreased from 12.54 to 11.84 mM and 20.42 to 17.75 mM, respectively, with an increasing substrate concentration from 0.075 to 0.3 mM. This suggests that S-TU-COS is a more potent inhibitor, and the different DP of COS may cause significantly different inhibition (p < 0.05) on the α-glucosidase activity. This research may provide new insights into the production of a COS with a suitable profile for antidiabetic activity.
Collapse
Affiliation(s)
- Supharada Khaisaat
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Saovanee Chancharoensin
- Global Innovation Centre (GIC), Thai Union Group PCL. S.M. Tower, Phaholyothin Road, Phayathai Sub-District, Phayathai, Bangkok 10400, Thailand
| | - Angkana Wipatanawin
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Manop Suphantharika
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Panwajee Payongsri
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Correspondence: ; Tel.: +66-2201-5315
| |
Collapse
|
8
|
Analysis of Isoflavones in Pueraria by UHPLC-Q-Orbitrap HRMS and Study on α-Glucosidase Inhibitory Activity. Foods 2022; 11:foods11213523. [DOI: 10.3390/foods11213523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Pueraria is a rich source of bioactive compounds, but there is a lack of comprehensive information concerning its composition. Therefore, a UHPLC-Q-Orbitrap HRMS method was developed to identify and quantify bioactive compounds in pueraria. Twelve isoflavones were quantified, with puerarin being the most abundant, followed by puerarin 6″-O-xyloside, 3′-methoxy puerarin, and 3′-hydroxy puerarin. A further 88 bioactive components in eight categories were also tentatively identified. The 12 isoflavones, except for genistein, exhibited α-glucosidase inhibitory activity. The binding of these compounds to the active site of α-glucosidase was confirmed via molecular docking analysis. These findings provide a basis for identifying pueraria as a promising functional food ingredient.
Collapse
|
9
|
Yin K, Yang J, Wang F, Wang Z, Xiang P, Xie X, Sun J, He X, Zhang X. A preliminary study of the chemical composition and bioactivity of Bombax ceiba L. flower and its potential mechanism in treating type 2 diabetes mellitus using ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry and network pharmacology analysis. Front Nutr 2022; 9:1018733. [PMID: 36313078 PMCID: PMC9608341 DOI: 10.3389/fnut.2022.1018733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to preliminary investigate the phytochemistry, bioactivity, hypoglycemic potential, and mechanism of action of Bombax ceiba L. flower (BCF), a wild edible and food plant in China. By using methanol extraction and liquid-liquid extraction, the crude extract (CE) of BCF and its petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EtOAc), n-butanol (n-BuOH), and aqueous (AQ) fractions were obtained, and their chemical components and biological activities were evaluated. Further high-performance liquid chromatography (HPLC) analysis was carried out to identify and quantify the active constituents of BFC and its five fractions, and the phytochemical composition of the best-performing fraction was then analyzed by ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC/Q-TOF-MS). Finally, a network pharmacology strategy based on the chemical profile of this fraction was applied to speculate its main hypoglycemic mechanism. Results revealed the excellent biological activities of BCF, especially the EtOAc fraction. In addition to the highest total flavonoid content (TFC) (367.72 μg RE/mg E) and total phenolics content (TPC) (47.97 μg GAE/mg E), EtOAc showed the strongest DPPH⋅ scavenging ability (IC50 value = 29.56 μg/mL), ABTS⋅+ scavenging ability (IC50 value = 84.60 μg/mL), and ferric reducing antioxidant power (FRAP) (889.62 μg FeSO4/mg E), which were stronger than the positive control BHT. EtOAc also exhibited the second-best α-glucosidase inhibitory capacity and second-best acetylcholinesterase (AChE) inhibitory capacity with the IC50 values of 2.85 and 3.27 mg/mL, respectively. Also, EtOAc inhibited HepG2, MCF-7, Raw264.7, and A549 cell with IC50 values of 1.08, 1.62, 0.77, and 0.87 mg/mL, which were the second or third strongest in all fractions. Additionally, HPLC analysis revealed significant differences in the compounds’ abundance between different fractions. Among them, EtOAc had the most detected compounds and the highest content. According to the results of UPLC/Q-TOF-MS, 38 compounds were identified in EtOAc, including 24 phenolic acids and 6 flavonoids. Network pharmacological analysis further confirmed 41 potential targets of EtOAc in the treatment of type 2 diabetes, and intracellular receptor signaling pathways, unsaturated fatty acid, and DNA transcription pathways were the most possible mechanisms. These findings suggested that BCF was worthwhile to be developed as an antioxidant and anti-diabetic food/drug.
Collapse
Affiliation(s)
- Kehong Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China
| | - Jinmei Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China
| | - Fang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China
| | - Zhenxing Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, China
| | - Xing Xie
- National R&D Center for Freshwater Fish Processing, College of Health, Jiangxi Normal University, Nanchang, China
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuemei He
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China,*Correspondence: Xuemei He,
| | - Xuechun Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China,Xuechun Zhang,
| |
Collapse
|
10
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
11
|
Han L, Song J, Yan C, Wang C, Wang L, Li W, Du Y, Li Q, Liang T. Inhibitory activity and mechanism of calycosin and calycosin-7-O-β-D-glucoside on α-glucosidase: Spectroscopic and molecular docking analyses. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Daou M, Elnaker NA, Ochsenkühn MA, Amin SA, Yousef AF, Yousef LF. In vitro α-glucosidase inhibitory activity of Tamarix nilotica shoot extracts and fractions. PLoS One 2022; 17:e0264969. [PMID: 35286313 PMCID: PMC8920278 DOI: 10.1371/journal.pone.0264969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/19/2022] [Indexed: 11/29/2022] Open
Abstract
α-glucosidase inhibitors represent an important class of type 2 antidiabetic drugs and they act by lowering postprandial hyperglycemia. Today, only three synthetic inhibitors exist on the market, and there is a need for novel, natural and more efficient molecules exhibiting this activity. In this study, we investigated the ability of Tamarix nilotica ethanolic and aqueous shoot extracts, as well as methanolic fractions prepared from aqueous crude extracts to inhibit α-glucosidase. Both, 50% ethanol and aqueous extracts inhibited α-glucosidase in a concentration-dependent manner, with IC50 values of 12.5 μg/mL and 24.8 μg/mL, respectively. Importantly, α-glucosidase inhibitory activity observed in the T. nilotica crude extracts was considerably higher than pure acarbose (IC50 = 151.1 μg/mL), the most highly prescribed α-glucosidase inhibitor on the market. When T. nilotica crude extracts were fractionated using methanol, enhanced α-glucosidase inhibitory activity was observed in general, with the highest observed α-glucosidase inhibitory activity in the 30% methanol fraction (IC50 = 5.21 μg/mL). Kinetic studies further revealed a competitive reversible mechanism of inhibition by the plant extract. The phytochemical profiles of 50% ethanol extracts, aqueous extracts, and the methanolic fractions were investigated and compared using a metabolomics approach. Statistical analysis revealed significant differences in the contents of the crude extracts and fractions and potentially identified the molecules that were most responsible for these observed variations. Higher α-glucosidase inhibitory activity was associated with an enrichment of terpenoids, fatty acids, and flavonoids. Among the identified molecules, active compounds with known α-glucosidase inhibitory activity were detected, including unsaturated fatty acids, triterpenoids, and flavonoid glycosides. These results put forward T. nilotica as a therapeutic plant for type 2 diabetes and a source of α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Mariane Daou
- Department of Biology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Nancy A. Elnaker
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Shady A. Amin
- Biology Program, New York University in Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ahmed F. Yousef
- Department of Biology, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membranes and Advances Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Lina F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
- * E-mail:
| |
Collapse
|
13
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|