1
|
De Luna JG, Gonzales SCB, Nuqui JJM, Capinding ES, Sacdalan CD. Docking-based computational analysis of guava ( Psidium guajava) leaves derived bioactive compounds as a coagulation factor IXa inhibitor. RSC Adv 2024; 14:25579-25585. [PMID: 39144371 PMCID: PMC11322807 DOI: 10.1039/d4ra04709e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Thrombotic disorders pose a global health threat, emphasizing the urgent need for effective management strategies. This study explores the potential of bioactive compounds derived from guava leaves in inhibiting coagulation factor IXa (CFIXa) using in silico methods. Using GC-MS, bioactive compounds extracted from guava leaf through ethanol maceration were identified. Pharmacokinetic properties were elucidated using SwissADME. Molecular docking with AutoDock Vina was used to investigate the interactions with CFIXa. CFIXa was modeled with pysimm/LAMMPS and analyzed with CastP for active site identification. The setup with a higher solvent concentration and lower surface area yielded the highest percent yield (78.541 g, 39.27%). Among the 28 identified bioactive compounds, predominantly terpenoids, only seven exhibited suitable pharmacokinetic properties for oral ingestion and drug development. Docking analysis revealed favorable binding of these compounds to CFIXa (-7.6:-5.3). This study shows inhibition of coagulation factor IXa, thus bridging the ambiguity surrounding the effect of guava leaves on hemostasis. These findings also reveal that guava leaf extract harbors bioactive compounds with potential as coagulation pathway inhibitors, promising novel avenues for thrombotic disorder management.
Collapse
Affiliation(s)
- Joseph G De Luna
- Department of Chemistry, Technological University of the Philippines Ayala Boulevard, Ermita Manila Philippines
| | | | - Jimuel Jan M Nuqui
- Department of Chemistry, Technological University of the Philippines Ayala Boulevard, Ermita Manila Philippines
| | - Evalyn S Capinding
- Department of Chemistry, Technological University of the Philippines Ayala Boulevard, Ermita Manila Philippines
| | - Corazon D Sacdalan
- Department of Chemistry, Technological University of the Philippines Ayala Boulevard, Ermita Manila Philippines
| |
Collapse
|
2
|
Liu Y, Li R, Song L, Li K, Yu H, Xing R, Liu S, Li P. Intermediate molecular weight-fucosylated chondroitin sulfate from sea cucumber Cucumaria frondosa is a promising anticoagulant targeting intrinsic factor IXa. Int J Biol Macromol 2024; 269:131952. [PMID: 38692541 DOI: 10.1016/j.ijbiomac.2024.131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Thromboembolic diseases pose a serious risk to human health worldwide. Fucosylated chondroitin sulfate (FCS) is reported to have good anticoagulant activity with a low bleeding risk. Molecular weight plays a significant role in the anticoagulant activity of FCS, and FCS smaller than octasaccharide in size has no anticoagulant activity. Therefore, identifying the best candidate for developing novel anticoagulant FCS drugs is crucial. Herein, native FCS was isolated from sea cucumber Cucumaria frondosa (FCScf) and depolymerized into a series of lower molecular weights (FCScfs). A comprehensive assessment of the in vitro anticoagulant activity and in vivo bleeding risk of FCScfs with different molecule weights demonstrated that 10 kDa FCScf (FCScf-10 K) had a greater intrinsic anticoagulant activity than low molecular weight heparin (LMWH) without any bleeding risk. Using molecular modeling combined with experimental validation, we revealed that FCScf-10 K can specifically inhibit the formation of the Xase complex by binding the negatively charged sulfate group of FCScf-10 K to the positively charged side chain of arginine residues on the specific surface of factor IXa. Thus, these data demonstrate that the intermediate molecular weight FCScf-10 K is a promising candidate for the development of novel anticoagulant drugs.
Collapse
Affiliation(s)
- Yuanjie Liu
- College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
3
|
Bing Y, Sun Z, Wu S, Zheng Y, Xi Y, Li W, Zou X, Qu Z. Discovery and verification of Q-markers for promoting blood circulation and removing stasis of raw and wine-steamed Vaccaria segetalis based on pharmacological evaluation combined with chemometrics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117120. [PMID: 37666377 DOI: 10.1016/j.jep.2023.117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dried and mature seeds of Vaccaria segetalis (Neck.) Garcke ex Asch. (VS) are known for their therapeutic effects, as they stimulate blood circulation, promote menstruation and diuresis and eliminate gonorrhoea. However, due to its hard shell, the dissolution of its active ingredients is often improved by steaming and frying in clinical applications. Among the processed products, wine-steamed Vaccaria segetalis (WVS) is one of the commonly used ones. Numerous historical records have shown that wine steaming can enhance the efficacy of drugs to promote blood circulation and remove blood stasis. However, the differences in the efficacy of VS and WVS in promoting blood circulation and removing blood stasis have not been thoroughly studied, and the possible reasons for these differences have not been reported. AIM OF THE STUDY The objective of this study was to identify quality markers (Q-markers) that could differentiate the efficacy of promoting blood circulation and removing blood stasis of VS and WVS, which could serve as a basis for the rational application of VS and WVS in clinical settings. MATERIALS AND METHODS A pharmacodynamic comparison between the water extracts of VS and WVS was carried out based on a mouse acute blood stasis model (ABS) and thrombus zebrafish model. The potential bioactive substances of WVS were screened by investigating the correlation between common peaks identified for 10 batches of WVS by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and their rate of thrombosis inhibition in zebrafish. Furthermore, multivariate statistical analysis of chemical components between VS and WVS was conducted to speculate the Q-markers combined with the results of the bioactive components. Based on the efficacy verification of Q-markers, the content of Q-markers in 10 batches of WVS was evaluated. RESULTS The results of efficacy comparison assays demonstrated that the efficacy of WVS was more prominent than VS at the same dose. Five components were screened as effective components of WVS for promoting blood circulation and removing blood stasis by correlation analysis. Furthermore, a total of 24 common ingredients were identified in VS and WVS extracts, and 9 of them showed increased dissolution rate after wine steaming, including 4 active ingredients, Hypaphorine, Vaccarin, Saponarin, and Isovitexin-2″-O-arabinoside, which were screened out by correlation analysis. The monomer test suggested that these 4 components could activate blood circulation and remove blood stasis in a dose-dependent manner. Consequently, Hypaphorine, Vaccarin, Saponarin, and Isovitexin-2″-O-arabinoside were selected as Q-markers to distinguish between VS and WVS. The content determination showed that the total contents of 4 Q-markers of WVS from 10 batches with different origins ranged from 0.478% to 0.716%. CONCLUSIONS This study compared the efficacy of VS and WVS in promoting blood circulation and resolving stasis and revealed Q-markers that reflected the difference in efficacy between them for the first time, which laid the foundation for establishing quality standards for WVS.
Collapse
Affiliation(s)
- Yifan Bing
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China.
| | - Zhiwei Sun
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China.
| | - Shuang Wu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China.
| | - Yan Zheng
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China.
| | - Yingbo Xi
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China.
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China; Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Harbin, 150076, China.
| | - Xiang Zou
- Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Harbin, 150076, China.
| | - Zhongyuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China.
| |
Collapse
|
4
|
Yoon HJ, Kundu S, Wu S. Molecular Dynamics Simulation Study of the Selective Inhibition of Coagulation Factor IXa over Factor Xa. Molecules 2023; 28:6909. [PMID: 37836752 PMCID: PMC10574344 DOI: 10.3390/molecules28196909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Thromboembolic disorders, arising from abnormal coagulation, pose a significant risk to human life in the modern world. The FDA has recently approved several anticoagulant drugs targeting factor Xa (FXa) to manage these disorders. However, these drugs have potential side effects, leading to bleeding complications in patients. To mitigate these risks, coagulation factor IXa (FIXa) has emerged as a promising target due to its selective regulation of the intrinsic pathway. Due to the high structural and functional similarities of these coagulation factors and their inhibitor binding modes, designing a selective inhibitor specifically targeting FIXa remains a challenging task. The dynamic behavior of protein-ligand interactions and their impact on selectivity were analyzed using molecular dynamics simulation, considering the availability of potent and selective compounds for both coagulation factors and the co-crystal structures of protein-ligand complexes. Throughout the simulations, we examined ligand movements in the binding site, as well as the contact frequencies and interaction fingerprints, to gain insights into selectivity. Interaction fingerprint (IFP) analysis clearly highlights the crucial role of strong H-bond formation between the ligand and D189 and A190 in the S1 subsite for FIXa selectivity, consistent with our previous study. This dynamic analysis also reveals additional FIXa-specific interactions. Additionally, the absence of polar interactions contributes to the selectivity for FXa, as observed from the dynamic profile of interactions. A contact frequency analysis of the protein-ligand complexes provides further confirmation of the selectivity criteria for FIXa and FXa, as well as criteria for binding and activity. Moreover, a ligand movement analysis reveals key interaction dynamics that highlight the tighter binding of selective ligands to the proteins compared to non-selective and inactive ligands.
Collapse
Affiliation(s)
- Hyun Jung Yoon
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sibsankar Kundu
- R&D Center, PharmCADD Co., Ltd., Busan 48792, Republic of Korea;
| | - Sangwook Wu
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea;
- R&D Center, PharmCADD Co., Ltd., Busan 48792, Republic of Korea;
| |
Collapse
|
5
|
Rodríguez DF, Durán-Osorio F, Duarte Y, Olivares P, Moglie Y, Dua K, Zacconi FC. Green by Design: Convergent Synthesis, Computational Analyses, and Activity Evaluation of New FXa Inhibitors Bearing Peptide Triazole Linking Units. Pharmaceutics 2021; 14:33. [PMID: 35056929 PMCID: PMC8780263 DOI: 10.3390/pharmaceutics14010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Green chemistry implementation has led to promising results in waste reduction in the pharmaceutical industry. However, the early sustainable development of pharmaceutically active compounds and ingredients remains a considerable challenge. Herein, we wish to report a green synthesis of new pharmaceutically active peptide triazoles as potent factor Xa inhibitors, an important drug target associated with the treatment of diverse cardiovascular diseases. The new inhibitors were synthesized in three steps, featuring cycloaddition reactions (high atom economy), microwave-assisted organic synthesis (energy efficiency), and copper nanoparticle catalysis, thus featuring Earth-abundant metals. The molecules obtained showed FXa inhibition, with IC50-values as low as 17.2 μM and no associated cytotoxicity in HEK293 and HeLa cells. These results showcase the environmental potential and chemical implications of the applied methodologies for the development of new molecules with pharmacological potential.
Collapse
Affiliation(s)
- Diego F. Rodríguez
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (D.F.R.); (F.D.-O.)
| | - Francisca Durán-Osorio
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (D.F.R.); (F.D.-O.)
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (Y.D.); (P.O.)
| | - Pedro Olivares
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (Y.D.); (P.O.)
| | - Yanina Moglie
- Departamento de Química INQUISUR, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Flavia C. Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (D.F.R.); (F.D.-O.)
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigaciones en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|