1
|
Karmous I, Elmer WH, Zuverza-Mena N, Vaidya S, Tlahig S, Scanley J, Bharadwaj A, White JC, Dimkpa CO. Plant-engineered ZnO and CuO nanoparticles exhibit pesticidal activity and mitigate Fusarium infestation in soybean: A mechanistic understanding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109672. [PMID: 39986238 DOI: 10.1016/j.plaphy.2025.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Herein, CuO and ZnO nanoparticles (NPs) were biogenically synthesized using plant (Artemisia vulgaris) extracts. The biogenic NPs were subsequently evaluated in vitro for antifungal activity (200 mg/L) against Fusarium virguliforme (FV; the cause of soybean sudden death), and for crop protection (200-500 mg/L) in FV-infested soybean. ZnONPs exhibited 3.8-, 2.5-, and 4.9 -fold greater in vitro antifungal activity, compared to Zn or Cu acetate salt, the Artemisia extract, and a commercial fungicide (Medalion Fludioxon), respectively. The corresponding CuONP values were 1.2-, 1.0-, and 2.2 -fold, respectively. Scanning electron microscopy (SEM) revealed significant morpho-anatomical damage to fungal mycelia and conidia. NP-treated FV lost their hyphal turgidity and uniformity and appeared structurally compromised. ZnONP caused shriveled and broken mycelia lacking conidia, while CuONP caused collapsed mycelia with shriveled and disfigured conidia. In soybean, 200 mg/L of both NPs enhanced growth by 13%, compared to diseased controls, in both soil and foliar exposures. Leaf SEM showed fungal colonization of different infection sites, including the glandular trichome, palisade parenchyma, and vasculature. Foliar application of ZnONP resulted in the deposition of particulate ZnO on the leaf surface and stomatal interiors, likely leading to particle and ion entry via several pathways, including ion diffusion across the cuticle/stomata. SEM also suggested that ZnO/CuO NPs trigger structural reinforcement and anatomical defense responses in both leaves and roots against fungal infection. Collectively, these findings provide important insights into novel and effective mechanisms of crop protection against fungal pathogens by plant-engineered metal oxide nanoparticles, thereby contributing to the sustainability of nano-enabled agriculture.
Collapse
Affiliation(s)
- Ines Karmous
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA; The Higher Institute of Applied Biology of Medenine (ISBAM), Road Djorf Km 22, 4119, University of Gabes, Tunisia; Faculty of Sciences of Bizerte (FSB), University of Carthage, 7021, Bizerte, Tunisia
| | - Wade H Elmer
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA
| | - Nubia Zuverza-Mena
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA
| | - Shital Vaidya
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA
| | - Samir Tlahig
- Dryland Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions of Medenine, Road Djorf Km 22, 4119, Medenine, Tunisia; Project Management Office PMO-UCAR, University of Carthage, Avenue of the Republic BP 77-1054 Amilcar, Tunisia
| | | | - Anuja Bharadwaj
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA
| | - Christian O Dimkpa
- The Connecticut Agricultural Experiment Station (CAES), 123 Huntington Street, 06511, New Haven, CT, USA.
| |
Collapse
|
2
|
Kovács K, Szierer Á, Mészáros E, Molnár Á, Rónavári A, Kónya Z, Feigl G. Species-specific modulation of nitro-oxidative stress and root growth in monocots by silica nanoparticle pretreatment under copper oxide nanoparticle stress. BMC PLANT BIOLOGY 2025; 25:188. [PMID: 39948461 PMCID: PMC11823027 DOI: 10.1186/s12870-025-06193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Abiotic stressors such as heavy metals and nanoparticles pose significant challenges to sustainable agriculture, with copper oxide nanoparticles (CuO NPs) known to inhibit root growth and induce oxidative stress in plants. While silica nanoparticles (SiO2 NPs) have been shown to increase abiotic stress tolerance, their role in mitigating CuO NP-induced stress in crops, especially monocots, remains poorly understood. This study addresses this critical knowledge gap by investigating how SiO2 NP pretreatment modulates CuO NP-induced stress responses, with a particular focus on root growth inhibition and nitro-oxidative stress pathways. RESULTS Using an in vitro semihydroponic system, seeds were pretreated with varying concentrations of SiO2 NPs (100-800 mg/L) before exposure to CuO NPs at levels known to inhibit root growth by 50%. SiO2 NP pretreatment alleviated CuO NP-induced root growth inhibition in sorghum, wheat, and rye but intensified it in triticale. These responses are associated with species-specific alterations in reactive signaling molecules, including a reduction in nitric oxide levels and an increase in hydrogen sulfide in sorghum, a decrease in superoxide anion levels in rye, and elevated hydrogen peroxide levels in wheat. Protein tyrosine nitration, a marker of nitro-oxidative stress, was reduced in most cases, further indicating the stress-mitigating role of SiO2 NPs. These signaling molecules were selected for their established roles in mediating oxidative and nitrosative stress responses under abiotic stress conditions. CONCLUSIONS SiO2 NP pretreatment modulates CuO NP-induced stress responses through species-specific regulation of reactive oxygen and nitrogen species, demonstrating its potential as a tool for enhancing crop resilience. These findings advance the understanding of nanoparticle‒plant interactions and provide a foundation for future applications of nanotechnology in sustainable agriculture. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Kamilla Kovács
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ádám Szierer
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary
| | - Enikő Mészáros
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary.
| |
Collapse
|
3
|
Ullah A, Ali F, Ullah F, Sadozai SK, Khan SA, Hussain S, Alrefaei AF, Ali S. Synergistic Antifungal Activity of Terbinafine in Combination with Light-Activated Gelatin-Silver Nanoparticles Against Candida albicans Strains. Pharmaceutics 2025; 17:125. [PMID: 39861772 PMCID: PMC11768782 DOI: 10.3390/pharmaceutics17010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by Candida albicans (C. albicans). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy. Silver nanoparticles were produced through a light-activated, gelatin-based method, resulting in particle sizes ranging from 56.8 nm to 66.2 nm, confirmed by dynamic light scattering and scanning electron microscopy. Stability studies indicated that AgNPs produced with 30 mg of silver nitrate (AgNO₃) exhibited the greatest stability over 60 days across different temperature conditions. The analysis through UV-visible spectrophotometry revealed a notable shift in the absorption spectra as AgNO₃ concentrations increased, which was associated with a strengthening of plasmon resonance. The effectiveness of the AgNPs and Terbinafine combination was assessed against three strains of C. albicans (ATCC 10231, ATCC 90028, and ATCC 18804). Terbinafine demonstrated strong antifungal properties with minimum inhibitory concentrations (MIC) values ranging from 2-4 µg/mL, whereas AgNPs on their own displayed moderate effectiveness. The integrated formulation notably enhanced effectiveness, especially against strain ATCC 90028, revealing a synergistic effect (FIFi = 0.369). These results were complemented by the findings of the time-to-kill assay, where the same strain showed a 3.2 log₁₀ CFU/mL decrease in viable cell count. The process by which AgNPs boost activity entails the disruption of the fungal cell membrane and its internal components, probably as a result of silver ion release and the generation of free radicals. The results indicate that the combination of Terbinafine and AgNPs may act as a powerful alternative for addressing resistant fungal infections, presenting an encouraging direction for future antifungal treatments.
Collapse
Affiliation(s)
- Atif Ullah
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan (F.A.); (S.K.S.); (S.A.K.); (S.H.)
| | - Fawad Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan (F.A.); (S.K.S.); (S.A.K.); (S.H.)
| | - Farman Ullah
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan (F.A.); (S.K.S.); (S.A.K.); (S.H.)
| | - Sajid Khan Sadozai
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan (F.A.); (S.K.S.); (S.A.K.); (S.H.)
| | - Saeed Ahmed Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan (F.A.); (S.K.S.); (S.A.K.); (S.H.)
| | - Sajid Hussain
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan (F.A.); (S.K.S.); (S.A.K.); (S.H.)
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 2455, Saudi Arabia;
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Akhtar S, Shafqat A, Ashraf R, Anwar S, Sohail F, Sharif S. Biopesticidal efficacy of green synthesized selenium-doped zinc oxide nanoparticles against Macrophomina phaseolina the causal agent of maize charcoal rot. Microb Pathog 2024; 200:107253. [PMID: 39740734 DOI: 10.1016/j.micpath.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
This study explores the potential antagonistic effects of selenium-doped zinc oxide nanoparticles (Se-ZnO NPs), synthesized through a sustainable approach, on maize charcoal rot induced by the fungus Macrophomina phaseolina. Se-ZnO-NPs were prepared using the rhizobium extract of Curcuma longa and characterized for their physicochemical properties. Characterization included various in vitro parameters such as FTIR, ICP-MS, particle size, PDI, and zeta potential. ICP-MS analysis revealed Se and Zn ion concentrations of 54.43 mg L-1 and 71.70 mg L-1, respectively. SEM analysis indicated a size of 37 nm with polyhedral morphology for the Se-ZnO-NPs. Additionally, EDX spectra confirmed the presence of Se and Zn in the nanoparticles. In vitro assays demonstrated that the highest nanoparticle concentration significantly inhibited M. phaseolina growth and spore germination, accompanied by increased enzyme activities. Greenhouse experiments were conducted to assess the efficacy of Se-ZnO-NPs in reducing charcoal rot severity in maize plants under controlled conditions. Furthermore, a second study evaluated various growth parameters of maize plants, such as shoot and root length, and biomass after 45 days of germination. Physiological attributes such as total chlorophyll content and reducing sugar were examined, while biochemical traits including total protein content, catalase, and polyphenol oxidase were assessed after the same germination period. The results indicated that soil amended with various concentrations (0.8-12.5 μg/ml) of NPs significantly enhanced maize plant growth compared to the respective positive control. The antifungal activity of the Se-ZnO-NPs against M. phaseolina showed a significant reduction in growth. Thus, the findings suggest that green-synthesized Se-ZnO-NPs could effectively combat the charcoal rot pathogen. However, further field experiments are needed to explore the activity of doped nanoparticles in soil against pathogens.
Collapse
Affiliation(s)
- Sundus Akhtar
- School of Botany, Minhaj university, Lahore, Pakistan
| | | | - Rubina Ashraf
- School of Botany, Minhaj university, Lahore, Pakistan
| | - Saima Anwar
- School of Botany, Minhaj university, Lahore, Pakistan
| | - Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Sajida Sharif
- Davis Pharmaceutical Laboratories, 121, industrial triangle area, kahuta road, Islamabad, Pakistan
| |
Collapse
|
5
|
Zhan Y, Hu H, Yu Y, Chen C, Zhang J, Jarnda KV, Ding P. Therapeutic strategies for drug-resistant Pseudomonas aeruginosa: Metal and metal oxide nanoparticles. J Biomed Mater Res A 2024; 112:1343-1363. [PMID: 38291785 DOI: 10.1002/jbm.a.37677] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Pseudomonas aeruginosa (PA) is a widely prevalent opportunistic pathogen. Multiple resistant strains of PA have emerged from excessive or inappropriate use of antibiotics, making their eradication increasingly difficult. Therefore, the search for highly efficient and secure novel antimicrobial agents is crucial. According to reports, there is an increasing exploration of nanometals for antibacterial purposes. The antibacterial mechanisms involving the nanomaterials themselves, the release of ions, and the induced oxidative stress causing leakage and damage to biomolecules are widely accepted. Additionally, the study of the cytotoxicity of metal nanoparticles is crucial for their antibacterial applications. This article summarizes the types of metal nanomaterials and metal oxide nanomaterials that can be used against PA, their respective unique antibacterial mechanisms, cytotoxicity, and efforts made to improve antibacterial performance and reduce toxicity, including combination therapy with other materials and antibiotics, as well as green synthesis approaches.
Collapse
Affiliation(s)
- Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Huiting Hu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Cuimei Chen
- School of Public Health, Xiangnan University, Chenzhou, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Kermue Vasco Jarnda
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| |
Collapse
|
6
|
Lopes IS, Soares JKC, de Medeiros LS, Coronato Courrol L. Evaluation of ALA-capped silver, copper, and silver-copper nanoparticles for controlling fungal plant pathogens. Microb Pathog 2024; 191:106672. [PMID: 38705219 DOI: 10.1016/j.micpath.2024.106672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Phytopathogenic fungi significantly threaten global food security, causing substantial yield and quality losses. Sustainable solutions are urgently needed to combat these agricultural pathogens. This study explored the potential of silver (Ag), copper (Cu), and combined Ag/Cu nanoparticles capped with aminolevulinic acid (ALA) as antifungal agents. The nanoparticles (ALAAg, ALACu, and ALAAgCu) were synthesized via photoreduction and characterized using various techniques (UV-Vis, TEM, XRD, Zeta potential). Their antifungal activity against four key plant pathogens (Alternaria grandis, Colletotrichum truncatum, Corynespora cassiicola, and Fusarium oxysporum) was evaluated using poisoned food techniques. Notably, ALAAgCuNPs demonstrated superior antifungal activity compared to a conventional fungicide against two fungal strains. Even at lower concentrations, ALAAgCuNPs exhibited fungistatic effects comparable to those of the control. These promising results suggest the potential of ALAAgCu NPs as a broad-spectrum, potentially eco-friendly alternative for fungal control in plants and seeds. This approach is crucial for ensuring crop health, harvest quality, and food safety.
Collapse
Affiliation(s)
- Isabela Santos Lopes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Jullio Kennedy Castro Soares
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Lívia Soman de Medeiros
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Lilia Coronato Courrol
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.
| |
Collapse
|
7
|
Anwar Y, Jaha HF, Ul-Islam M, Kamal T, Khan SB, Ullah I, Al-Maaqar SM, Ahmed S. Development of silver-doped copper oxide and chitosan nanocomposites for enhanced antimicrobial activities. Z NATURFORSCH C 2024; 79:137-148. [PMID: 38820053 DOI: 10.1515/znc-2023-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a significant and pressing public health concern, posing serious challenges to effectively preventing and treating persistent diseases. Despite various efforts made in recent years to address this problem, the global trends of AMR continue to escalate without any indication of decline. As AMR is well-known for antibiotics, developing new materials such as metal containing compounds with different mechanisms of action is crucial to effectively address this challenge. Copper, silver, and chitosan in various forms have demonstrated significant biological activities and hold promise for applications in medicine and biotechnology. Exploring the biological properties of these nanoparticles is essential for innovative therapeutic approaches in treating bacterial and fungal infections, cancer, and other diseases. To this end, the present study aimed to synthesize silver@copper oxide (Ag@CuO) nanoparticles and its chitosan nanocomposite (Chi-Ag@CuO) to investigate their antimicrobial efficacy. Various established spectroscopic and microscopic methods were employed for characterization purposes, encompassing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Subsequently, the antimicrobial activity of the nanoparticles was assessed through MIC (minimum inhibitory concentration), MBC (minimum bactericidal concentration), and well-disk diffusion assays against Pseudomonas aeruginosa, Acinetobacter baumannii Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans. The size of the CuO-NPs, Ag@CuO, and Chi-Ag@CuO NPs was found to be 70-120 nm with a spherical shape and an almost uniform distribution. The nanocomposites were found to possess a minimum inhibitory concentration (MIC) of 5 μg/mL and a minimum bactericidal concentration (MBC) of 250 μg/mL. Moreover, these nanocomposites generated varying clear inhibition zones, with diameters ranging from a minimum of 9 ± 0.5 mm to a maximum of 25 ± 0.5 mm. Consequently, it is evident that the amalgamation of copper-silver-chitosan nanoparticles has exhibited noteworthy antimicrobial properties in the controlled laboratory environment, surpassing the performance of other types of nanoparticles.
Collapse
Affiliation(s)
- Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hisham Faiz Jaha
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Şalālah 211, Oman
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ihsan Ullah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh M Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, Faculty of Education, Albaydha University, Al-Baydha, Yemen
| | - Sameer Ahmed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Vodyashkin A, Stoinova A, Kezimana P. Promising biomedical systems based on copper nanoparticles: Synthesis, characterization, and applications. Colloids Surf B Biointerfaces 2024; 237:113861. [PMID: 38552288 DOI: 10.1016/j.colsurfb.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Copper and copper oxide nanoparticles (CuNPs) have unique physicochemical properties that make them highly promising for biomedical applications. This review discusses the application of CuNPs in biomedicine, including diagnosis, therapy, and theranostics. Recent synthesis methods, with an emphasis on green approaches, are described, and the latest techniques for nanoparticle characterization are critically analyzed. CuNPs, including Cu2O, CuO, and Cu, have significant potential as anti-cancer agents, drug delivery systems, and photodynamic therapy enhancers, among other applications. While challenges such as ensuring biocompatibility and stability must be addressed, the state-of-the-art research reviewed here provides strong evidence for the efficacy and versatility of CuNPs. These multifunctional properties have been extensively researched and documented, showcasing the immense potential of CuNPs in biomedicine. Overall, the evidence suggests that CuNPs are a promising avenue for future research and development in biomedicine. We strongly support further progress in the development of synthesis and application strategies to enhance the effectiveness and safety of CuNPs for clinical purposes.
Collapse
Affiliation(s)
| | - Anastasia Stoinova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Parfait Kezimana
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| |
Collapse
|
9
|
Tiryaki E, Zorlu T, Alvarez-Puebla RA. Magnetic-Plasmonic Nanocomposites as Versatile Substrates for Surface-enhanced Raman Scattering (SERS) Spectroscopy. Chemistry 2024; 30:e202303987. [PMID: 38294096 DOI: 10.1002/chem.202303987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy, a highly sensitive technique for detecting trace-level analytes, relies on plasmonic substrates. The choice of substrate, its morphology, and the excitation wavelength are crucial in SERS applications. To address advanced SERS requirements, the design and use of efficient nanocomposite substrates have become increasingly important. Notably, magnetic-plasmonic (MP) nanocomposites, which combine magnetic and plasmonic properties within a single particle system, stand out as promising nanoarchitectures with versatile applications in nanomedicine and SERS spectroscopy. In this review, we present an overview of MP nanocomposite fabrication methods, explore surface functionalization strategies, and evaluate their use in SERS. Our focus is on how different nanocomposite designs, magnetic and plasmonic properties, and surface modifications can significantly influence their SERS-related characteristics, thereby affecting their performance in specific applications such as separation, environmental monitoring, and biological applications. Reviewing recent studies highlights the multifaceted nature of these materials, which have great potential to transform SERS applications across a range of fields, from medical diagnostics to environmental monitoring. Finally, we discuss the prospects of MP nanocomposites, anticipating favorable developments that will make substantial contributions to various scientific and technological areas.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials for Biomedical Applications. Italian Institute of Technology (IIT), Geneva, 16163, Geneve, Italy
| | - Tolga Zorlu
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, A-1090, Vienna, Austria
| | - Ramon A Alvarez-Puebla
- Department of Inorganic and Physical Chemistry, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
- ICREA, Passeig Lluis Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
10
|
Farasati Far B, Maleki-Baladi R, Fathi-Karkan S, Babaei M, Sargazi S. Biomedical applications of cerium vanadate nanoparticles: a review. J Mater Chem B 2024; 12:609-636. [PMID: 38126443 DOI: 10.1039/d3tb01786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cerium vanadate nanoparticles (CeVO4 NPs), which are members of the rare earth orthovanadate nanomaterial family, have generated considerable interest due to their diverse properties and prospective biomedical applications. The current study, which provides a comprehensive overview of the synthesis and characterization techniques for CeVO4 NPs, emphasizes the sonochemical method as an efficient and straightforward technique for producing CeVO4 NPs with tunable size and shape. This paper investigates the toxicity and biocompatibility of CeVO4 NPs, as well as their antioxidant and catalytic properties, which allow them to modify the redox state of biological systems and degrade organic pollutants. In addition, the most recent developments in the medicinal applications of CeVO4 NPs, such as cancer treatment, antibacterial activity, biosensing, and drug or gene delivery, are emphasized. In addition, the disadvantages of CeVO4 NPs, such as stability, aggregation, biodistribution, and biodegradation, are outlined, and several potential solutions are suggested. The research concludes with data and recommendations for developing and enhancing CeVO4 NPs in the biomedical industry.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Reza Maleki-Baladi
- Department of Animal Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
- Young Researchers and Elite Club, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
- Universal Scientific Education and Research Network (USERN), Bojnourd, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, 9417694735, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
11
|
Geremew A, Gonzalles J, Peace E, Woldesenbet S, Reeves S, Brooks N, Carson L. Green Synthesis of Novel Silver Nanoparticles Using Salvia blepharophylla and Salvia greggii: Antioxidant and Antidiabetic Potential and Effect on Foodborne Bacterial Pathogens. Int J Mol Sci 2024; 25:904. [PMID: 38255978 PMCID: PMC10815671 DOI: 10.3390/ijms25020904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
In the face of evolving healthcare challenges, the utilization of silver nanoparticles (AgNPs) has emerged as a compelling solution due to their unique properties and versatile applications. The aim of this study was the synthesis and characterization of novel AgNPs (SB-AgNPs and SG-AgNPs, respectively) using Salvia blepharophylla and Salvia greggii leaf extracts and the evaluation of their antimicrobial, antioxidant, and antidiabetic activities. Several analytical instrumental techniques were utilized for the characterization of SB-AgNPs and SG-AgNPs, including UV-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transmission infrared (FT-IR) spectroscopy, energy-dispersive X-ray analysis (EDX), and X-ray diffraction (XRD). FTIR analysis identified various functional groups in the leaf extracts and nanoparticles, suggesting the involvement of phytochemicals as reducing and stabilizing agents. High-resolution TEM images displayed predominantly spherical nanoparticles with average sizes of 52.4 nm for SB-AgNPs and 62.5 nm for SG-AgNPs. Both SB-AgNPs and SG-AgNPs demonstrated remarkable antimicrobial activity against Gram-positive bacteria Staphylococcus aureus and Listeria monocytogenes and Gram-negative bacteria Salmonella typhimurium and Escherichia coli. SB-AgNPs and SG-AgNPs also exhibited 90.2 ± 1.34% and 89.5 ± 1.5% DPPH scavenging and 86.5 ± 1.7% and 80.5 ± 1.2% α-amylase inhibition, respectively, at a concentration of 100 μg mL-1. Overall, AgNPs synthesized using S. blepharophylla and Salvia greggii leaf extracts may serve as potential candidates for antibacterial, antioxidant, and antidiabetic agents. Consequently, this study provides viable solutions to mitigate the current crisis of antibiotic resistance and to efficiently combat antimicrobial infections and Type 2 diabetes.
Collapse
Affiliation(s)
- Addisie Geremew
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (A.G.); (J.G.III); (E.P.); (S.W.)
| | - John Gonzalles
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (A.G.); (J.G.III); (E.P.); (S.W.)
| | - Elisha Peace
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (A.G.); (J.G.III); (E.P.); (S.W.)
| | - Selamawit Woldesenbet
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (A.G.); (J.G.III); (E.P.); (S.W.)
| | - Sheena Reeves
- Department of Chemical Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; (S.R.); (N.B.J.)
| | - Nigel Brooks
- Department of Chemical Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; (S.R.); (N.B.J.)
| | - Laura Carson
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (A.G.); (J.G.III); (E.P.); (S.W.)
| |
Collapse
|
12
|
Nawaz A, Rehman HU, Usman M, Wakeel A, Shahid MS, Alam S, Sanaullah M, Atiq M, Farooq M. Nanobiotechnology in crop stress management: an overview of novel applications. DISCOVER NANO 2023; 18:74. [PMID: 37382723 PMCID: PMC10214921 DOI: 10.1186/s11671-023-03845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/05/2023] [Indexed: 06/30/2023]
Abstract
Agricultural crops are subject to a variety of biotic and abiotic stresses that adversely affect growth and reduce the yield of crop plantss. Traditional crop stress management approaches are not capable of fulfilling the food demand of the human population which is projected to reach 10 billion by 2050. Nanobiotechnology is the application of nanotechnology in biological fields and has emerged as a sustainable approach to enhancing agricultural productivity by alleviating various plant stresses. This article reviews innovations in nanobiotechnology and its role in promoting plant growth and enhancing plant resistance/tolerance against biotic and abiotic stresses and the underlying mechanisms. Nanoparticles, synthesized through various approaches (physical, chemical and biological), induce plant resistance against these stresses by strengthening the physical barriers, improving plant photosynthesis and activating plant defense mechanisms. The nanoparticles can also upregulate the expression of stress-related genes by increasing anti-stress compounds and activating the expression of defense-related genes. The unique physico-chemical characteristics of nanoparticles enhance biochemical activity and effectiveness to cause diverse impacts on plants. Molecular mechanisms of nanobiotechnology-induced tolerance to abiotic and biotic stresses have also been highlighted. Further research is needed on efficient synthesis methods, optimization of nanoparticle dosages, application techniques and integration with other technologies, and a better understanding of their fate in agricultural systems.
Collapse
Affiliation(s)
- Ahmad Nawaz
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Hafeez Ur Rehman
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Sardar Alam
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| |
Collapse
|
13
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
14
|
Vera-Reyes I, Altamirano-Hernández J, Reyes-de la Cruz H, Granados-Echegoyen CA, Loera-Alvarado G, López-López A, Garcia-Cerda LA, Loera-Alvarado E. Inhibition of Phytopathogenic and Beneficial Fungi Applying Silver Nanoparticles In Vitro. Molecules 2022; 27:molecules27238147. [PMID: 36500239 PMCID: PMC9738576 DOI: 10.3390/molecules27238147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
In the current research, our work measured the effect of silver nanoparticles (AgNP) synthesized from Larrea tridentata (Sessé and Moc. ex DC.) on the mycelial growth and morphological changes in mycelia from different phytopathogenic and beneficial fungi. The assessment was conducted in Petri dishes, with Potato-Dextrose-Agar (PDA) as the culture medium; the AgNP concentrations used were 0, 60, 90, and 120 ppm. Alternaria solani and Botrytis cinerea showed the maximum growth inhibition at 60 ppm (70.76% and 51.75%). Likewise, Macrophomina spp. required 120 ppm of AgNP to achieve 65.43%, while Fusarium oxisporum was less susceptible, reaching an inhibition of 39.04% at the same concentration. The effect of silver nanoparticles was inconspicuous in Pestalotia spp., Colletotrichum gloesporoides, Phytophthora cinnamomi, Beauveria bassiana, Metarhizium anisopliae, and Trichoderma viridae fungi. The changes observed in the morphology of the fungi treated with nanoparticles were loss of definition, turgidity, and constriction sites that cause aggregations of mycelium, dispersion of spores, and reduced mycelium growth. AgNP could be a sustainable alternative to managing diseases caused by Alternaria solani and Macrophomina spp.
Collapse
Affiliation(s)
- Ileana Vera-Reyes
- CONACYT-Centro de Investigación en Química Aplicada, Depto. de Biociencias y Agrotecnología. Blvd, Enrique Reyna H. 140, Saltillo C.P. 25294, Coahuila, Mexico
| | - Josué Altamirano-Hernández
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N Ciudad Universitaria, Morelia C.P. 58030, Michoacán, Mexico
| | - Homero Reyes-de la Cruz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N Ciudad Universitaria, Morelia C.P. 58030, Michoacán, Mexico
| | - Carlos A. Granados-Echegoyen
- CONACYT-Universidad Autónoma de Campeche, Centro de Estudios en Desarrollo Sustentable y Aprovechamiento de la Vida Silvestre (CEDESU), Av. Agustín Melgar, Colonia Buenavista, San Francisco de Campeche C.P. 24039, Campeche, Mexico
| | - Gerardo Loera-Alvarado
- Colegio de Postgraduados, Campus San Luis Potosí, Innovación en Manejo de Recursos Naturales, Iturbide 73, Salinas de Hidalgo C.P. 78600, San Luis Potosí, Mexico
| | - Abimael López-López
- Tecnológico Nacional de México, Campus Instituto Tecnológico de la Zona Maya, Carretera Chetumal-Escárcena, Km. 21.5, Ejido Juan Sarabia C.P. 77965, Quintana Roo, Mexico
| | - Luis A. Garcia-Cerda
- Centro de Investigación en Química Aplicada, Depto. Materiales Avanzados. Blvd, Enrique Reyna H. 140, San José de los Cerritos, Saltillo C.P. 25294, Coahuila, Mexico
| | - Esperanza Loera-Alvarado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N Ciudad Universitaria, Morelia C.P. 58030, Michoacán, Mexico
- CONACYT-Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N Ciudad Universitaria, Morelia C.P. 58030, Michoacán, Mexico
- Correspondence:
| |
Collapse
|
15
|
Caraway HE, Lau JZ, Maron B, Oh MW, Belo Y, Brill A, Malach E, Ismail N, Hayouka Z, Lau GW. Antimicrobial Random Peptide Mixtures Eradicate Acinetobacter baumannii Biofilms and Inhibit Mouse Models of Infection. Antibiotics (Basel) 2022; 11:antibiotics11030413. [PMID: 35326876 PMCID: PMC8944503 DOI: 10.3390/antibiotics11030413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance is one of the greatest crises in human medicine. Increased incidents of antibiotic resistance are linked to clinical overuse and overreliance on antibiotics. Among the ESKAPE pathogens, Acinetobacter baumannii, especially carbapenem-resistant isolates, has emerged as a significant threat in the context of blood, urinary tract, lung, and wound infections. Therefore, new approaches that limit the emergence of antibiotic resistant A. baumannii are urgently needed. Recently, we have shown that random peptide mixtures (RPMs) are an attractive alternative class of drugs to antibiotics with strong safety and pharmacokinetic profiles. RPMs are antimicrobial peptide mixtures produced by incorporating two amino acids at each coupling step, rendering them extremely diverse but still defined in their overall composition, chain length, and stereochemistry. The extreme diversity of RPMs may prevent bacteria from evolving resistance rapidly. Here, we demonstrated that RPMs rapidly and efficiently kill different strains of A. baumannii, inhibit biofilm formation, and disrupt mature biofilms. Importantly, RPMs attenuated bacterial burden in mouse models of acute pneumonia and soft tissue infection and significantly reduced mouse mortality during sepsis. Collectively, our results demonstrate RPMs have the potential to be used as powerful therapeutics against antibiotic-resistant A. baumannii.
Collapse
Affiliation(s)
- Hannah E. Caraway
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; (H.E.C.); (J.Z.L.); (M.W.O.)
| | - Jonathan Z. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; (H.E.C.); (J.Z.L.); (M.W.O.)
| | - Bar Maron
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (B.M.); (Y.B.); (A.B.); (E.M.)
| | - Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; (H.E.C.); (J.Z.L.); (M.W.O.)
| | - Yael Belo
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (B.M.); (Y.B.); (A.B.); (E.M.)
| | - Aya Brill
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (B.M.); (Y.B.); (A.B.); (E.M.)
| | - Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (B.M.); (Y.B.); (A.B.); (E.M.)
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, USA;
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (B.M.); (Y.B.); (A.B.); (E.M.)
- Correspondence: (Z.H.); (G.W.L.)
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; (H.E.C.); (J.Z.L.); (M.W.O.)
- Correspondence: (Z.H.); (G.W.L.)
| |
Collapse
|