1
|
Huang SS, Yang HX, He J, Liu JK, Feng T. Discovery of a Biocontrol Strain Trichaptum laricinum: Its Metabolites and Antifungal Activity against Pathogenic Fungus Colletotrichum anthrisci. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13154-13163. [PMID: 38780776 DOI: 10.1021/acs.jafc.4c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Finding safe and environmentally friendly fungicides is one of the important strategies in modern pesticide research and development. In this work, the antipathogenic effects of the fungus Trichaptum laricinum against the anthracnose pathogen Colletotrichum anthrisci were studied. The EtOAc extract of T. laricinum showed remarkable antifungal activity against C. anthrisci with an inhibition rate of 50% at 256 μg/mL. Bioguided isolation of the cultural broth of T. laricinum produced four new drimane sesquiterpenes, trichalarins A-D (1-4), and six other metabolites (5-10). Their structures were established by extensive spectroscopic methods, quantum chemical calculations, and single-crystal X-ray diffraction. All compounds exhibited antifungal activity against C. anthrisci with minimum inhibitory concentrations (MICs) of 8-64 μg/mL in vitro. Further in vivo assay suggested that compounds 2, 6, and 9 could significantly inhibit C. anthrisci growth in avocado fruit with inhibition rates close to 80% at the concentration of 256 μg/mL, while compounds 2 and 6 had an inhibition rate over 90% at the concentration of 512 μg/mL. The EtOAc extract of T. laricinum had no inhibitory effect on Pinus massoniana seed germination and growth at the concentration of 2 mg/mL, showing good environmental friendliness. Thus, the fungus T. laricinum could be considered as an ideal biocontrol strain, and its metabolites provided a diverse material basis for the antibiotic agents.
Collapse
Affiliation(s)
- Shan-Shan Huang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hui-Xiang Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Juan He
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ji-Kai Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Tao Feng
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
2
|
Ma JT, Dong XY, Li ZH, Yan H, He J, Liu JK, Feng T. Antibacterial Metabolites from Kiwi Endophytic Fungus Fusarium tricinctum, a Potential Biocontrol Strain for Kiwi Canker Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7679-7688. [PMID: 37167018 DOI: 10.1021/acs.jafc.3c00233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is a Gram-negative bacterium causing the kiwifruit canker disease, resulting in serious economic losses to the kiwifruit industry. This study investigated the use of an endophytic fungus, Fusarium tricinctum, obtained from the kiwi plant (Actinidia chinesis) as a potential biocontrol strain against the Psa. F. tricinctum showed an inhibition rate of 59.5% in vitro against Psa. Bioassay-guided isolation was conducted on the cultural broth of F. tricinctum and seven new imidazole alkaloids, (±)-fusaritricine J ((±)-1) and fusaritricines K-P (2-7), and four enniatins (8-11) were identified. Their absolute configurations were established through extensive spectroscopic methods, quantum chemical calculations, and X-ray single crystal diffraction. Compounds 1, 4, 5, and 8-11 showed comparable anti-bacterial activities against Psa as positive control, with MIC values of 25-50 μg/mL. Further cell membrane permeability assay suggested that the most active compound 4 could destroy the bacterial cell wall structure. Hence, F. tricinctum metabolites could be applied as potential anti-Psa agents, and F. tricinctum could be considered a biocontrol strain for the control of the kiwifruit canker disease.
Collapse
Affiliation(s)
- Jin-Tao Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xin-Yue Dong
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - He Yan
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Juan He
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
3
|
C S, G. R R, L. F L, M.C.G DR, N.B C, S.C D, O. L F. Advances and perspectives for antimicrobial peptide and combinatory therapies. Front Bioeng Biotechnol 2022; 10:1051456. [PMID: 36578509 PMCID: PMC9791095 DOI: 10.3389/fbioe.2022.1051456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) have shown cell membrane-directed mechanisms of action. This specificity can be effective against infectious agents that have acquired resistance to conventional drugs. The AMPs' membrane-specificity and their great potential to combat resistant microbes has brought hope to the medical/therapeutic scene. The high death rate worldwide due to antimicrobial resistance (AMR) has pushed forward the search for new molecules and product developments, mainly antibiotics. In the current scenario, other strategies including the association of two or more drugs have contributed to the treatment of difficult-to-treat infectious diseases, above all, those caused by bacteria. In this context, the synergistic action of AMPs associated with current antibiotic therapy can bring important results for the production of new and effective drugs to overcome AMR. This review presents the advances obtained in the last 5 years in medical/antibiotic therapy, with the use of products based on AMPs, as well as perspectives on the potentialized effects of current drugs combined with AMPs for the treatment of bacterial infectious diseases.
Collapse
Affiliation(s)
- Santos C
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande, Brazil
| | - Rodrigues G. R
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
| | - Lima L. F
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
| | - dos Reis M.C.G
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
| | - Cunha N.B
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
- Faculdade de Agronomia e Medicina Veterinária (FAV), Universidade de Brasília (UnB), Brasília, Brazil
| | - Dias S.C
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
- Programa de Pós-Graduação Em Biologia Animal, Universidade de Brasília (UnB), Brasília, Brazil
| | - Franco O. L
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
- Programa de Pós-Graduação Em Patologia Molecular, Universidade de Brasília (UnB), Brasília, Brazil
| |
Collapse
|
4
|
Yu JJ, Wei WK, Zhang Y, Cox RJ, He J, Liu JK, Feng T. Terpenoids from Kiwi endophytic fungus Bipolaris sp. and their antibacterial activity against Pseudomonas syringae pv. actinidiae. Front Chem 2022; 10:990734. [PMID: 36118317 PMCID: PMC9475172 DOI: 10.3389/fchem.2022.990734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
A chemical investigation on the kiwi endophytic fungus Bipolaris sp. Resulted in the isolation of eight new terpenoids (1–8) and five known analogues (9–13). Compounds 1–5 are novel sativene sesquiterpenoids containing three additional skeletal carbons, while compounds 4 and 5 are rare dimers. Compounds 6–8 and 13 are sesterterpenoids that have been identified from this species for the first time. Compounds 4 and 5 showed antibacterial activity against kiwifruit canker pathogen Pseudomonas syringae pv. Actinidiae (Psa) with MIC values of 32 and 64 μg/ml, respectively.
Collapse
Affiliation(s)
- Jun-Jie Yu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Wen-Ke Wei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Russell J. Cox
- Institute for Organic Chemistry and Biomolekulares Wirkstoffzentrum (BMWZ), Hannover, Germany
| | - Juan He
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- *Correspondence: Juan He, ; Ji-Kai Liu, ; Tao Feng,
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- *Correspondence: Juan He, ; Ji-Kai Liu, ; Tao Feng,
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- *Correspondence: Juan He, ; Ji-Kai Liu, ; Tao Feng,
| |
Collapse
|
5
|
Yan BC, Wang WG, Kong LM, Tang JW, Du X, Li Y, Puno PT. Cytochalasans from the Endophytic Fungus Phomopsis sp. shj2 and Their Antimigratory Activities. J Fungi (Basel) 2022; 8:jof8050543. [PMID: 35628798 PMCID: PMC9143583 DOI: 10.3390/jof8050543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cytochalasans from the endophytic fungi featured structure diversity. Our previous study has disclosed that cytochalasans from the endophytic fungus Phomopsis sp. shj2 exhibited an antimigratory effect. Further chemical investigation on Phomopsis sp. shj2 has led to the discovery of seven new cytochalasans (1–7), together with four known ones. Their structures were elucidated through extensive spectroscopic data interpretation and single-crystal X-ray diffraction analysis. Compounds 1–3 and 8–11 exhibited antimigratory effects against MDA-MB-231 in vitro with IC50 values in the range of 1.01−10.42 μM.
Collapse
Affiliation(s)
- Bing-Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (B.-C.Y.); (W.-G.W.); (L.-M.K.); (J.-W.T.); (X.D.); (Y.L.)
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Guang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (B.-C.Y.); (W.-G.W.); (L.-M.K.); (J.-W.T.); (X.D.); (Y.L.)
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Ling-Mei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (B.-C.Y.); (W.-G.W.); (L.-M.K.); (J.-W.T.); (X.D.); (Y.L.)
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Jian-Wei Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (B.-C.Y.); (W.-G.W.); (L.-M.K.); (J.-W.T.); (X.D.); (Y.L.)
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Du
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (B.-C.Y.); (W.-G.W.); (L.-M.K.); (J.-W.T.); (X.D.); (Y.L.)
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (B.-C.Y.); (W.-G.W.); (L.-M.K.); (J.-W.T.); (X.D.); (Y.L.)
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (B.-C.Y.); (W.-G.W.); (L.-M.K.); (J.-W.T.); (X.D.); (Y.L.)
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
6
|
Abstract
AbstractAscomycetes belonging to the order Sordariales are a well-known reservoir of secondary metabolites with potential beneficial applications. Species of the Sordariales are ubiquitous, and they are commonly found in soils and in lignicolous, herbicolous, and coprophilous habitats. Some of their species have been used as model organisms in modern fungal biology or were found to be prolific producers of potentially useful secondary metabolites. However, the majority of sordarialean species are poorly studied. Traditionally, the classification of the Sordariales has been mainly based on morphology of the ascomata, ascospores, and asexual states, characters that have been demonstrated to be homoplastic by modern taxonomic studies based on multi-locus phylogeny. Herein, we summarize for the first time relevant information about the available knowledge on the secondary metabolites and the biological activities exerted by representatives of this fungal order, as well as a current outlook of the potential opportunities that the recent advances in omic tools could bring for the discovery of secondary metabolites in this order.
Collapse
|
7
|
Yu JJ, Jin YX, Huang SS, He J. Sesquiterpenoids and Xanthones from the Kiwifruit-Associated Fungus Bipolaris sp. and Their Anti-Pathogenic Microorganism Activity. J Fungi (Basel) 2021; 8:9. [PMID: 35049949 PMCID: PMC8781276 DOI: 10.3390/jof8010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Nine previously undescribed sesquiterpenoids, bipolarisorokins A-I (1-9); two new xanthones, bipolarithones A and B (10 and 11); two novel sativene-xanthone adducts, bipolarithones C and D (12 and 13); as well as five known compounds (14-18) were characterized from the kiwifruit-associated fungus Bipolaris sp. Their structures were elucidated by extensive spectroscopic methods, electronic circular dichroism (ECD), 13C NMR calculations, DP4+ probability analyses, and single crystal X-ray diffractions. Many compounds exhibited anti-pathogenic microorganism activity against the bacterium Pseudomonas syringae pv. actinidiae and four pathogenic microorganisms.
Collapse
Affiliation(s)
| | | | | | - Juan He
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.-J.Y.); (Y.-X.J.); (S.-S.H.)
| |
Collapse
|