1
|
Belashov AV, Zhikhoreva AA, Salova AV, Belyaeva TN, Litvinov IK, Kornilova ES, Semenova IV, Vasyutinskii OS. Automatic segmentation of lysosomes and analysis of intracellular pH with Radachlorin photosensitizer and FLIM. Biochem Biophys Res Commun 2024; 710:149835. [PMID: 38574457 DOI: 10.1016/j.bbrc.2024.149835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
We report application of the fluorescence lifetime imaging microscopy (FLIM) for analysis of distributions of intracellular acidity using a chlorin-e6 based photosensitizer Radachlorin. An almost two-fold increase of the photosensitizer fluorescence lifetime in alkaline microenvironments as compared to acidic ones allowed for clear distinguishing between acidic and alkaline intracellular structures. Clusterization of a phasor plot calculated from fits of the FLIM raw data by two Gaussian distributions provided accurate automatic segmentation of lysosomes featuring acidic contents. The approach was validated in colocalization experiments with LysoTracker fluorescence in living cells of four established lines. The dependence of photosensitizer fluorescence lifetime on microenvironment acidity allowed for estimation of pH inside the cells, except for the nuclei, where photosensitizer does not penetrate. The developed method is promising for combined application of the photosensitizer for both photodynamic treatment and diagnostics.
Collapse
Affiliation(s)
- A V Belashov
- Ioffe Institute, Russian Academy of Sciences, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia
| | - A A Zhikhoreva
- Ioffe Institute, Russian Academy of Sciences, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia
| | - A V Salova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Pr., 4, St. Petersburg, 194064, Russia
| | - T N Belyaeva
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Pr., 4, St. Petersburg, 194064, Russia
| | - I K Litvinov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Pr., 4, St. Petersburg, 194064, Russia
| | - E S Kornilova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Pr., 4, St. Petersburg, 194064, Russia
| | - I V Semenova
- Ioffe Institute, Russian Academy of Sciences, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia.
| | - O S Vasyutinskii
- Ioffe Institute, Russian Academy of Sciences, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia
| |
Collapse
|
2
|
Aebisher D, Przygórzewska A, Myśliwiec A, Dynarowicz K, Krupka-Olek M, Bożek A, Kawczyk-Krupka A, Bartusik-Aebisher D. Current Photodynamic Therapy for Glioma Treatment: An Update. Biomedicines 2024; 12:375. [PMID: 38397977 PMCID: PMC10886821 DOI: 10.3390/biomedicines12020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Research on the development of photodynamic therapy for the treatment of brain tumors has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits, such as an improved median rate of survival. The use of photodynamic therapy is characterized by relatively few side effects, which is a significant advantage compared to conventional treatment methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy. Continued research in this area could bring significant advances, influencing future standards of treatment for this difficult and deadly disease.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Magdalena Krupka-Olek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Andrzej Bożek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
3
|
Redkin TS, Sleptsova EE, Turubanova VD, Saviuk MO, Lermontova SA, Klapshina LG, Peskova NN, Balalaeva IV, Krysko O, Mishchenko TA, Vedunova MV, Krysko DV. Dendritic Cells Pulsed with Tumor Lysates Induced by Tetracyanotetra(aryl)porphyrazines-Based Photodynamic Therapy Effectively Trigger Anti-Tumor Immunity in an Orthotopic Mouse Glioma Model. Pharmaceutics 2023; 15:2430. [PMID: 37896190 PMCID: PMC10610423 DOI: 10.3390/pharmaceutics15102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Research in the past decade on immunogenic cell death (ICD) has shown that the immunogenicity of dying tumor cells is crucial for effective anticancer therapy. ICD induction leads to the emission of specific damage-associated molecular patterns (DAMPs), which act as danger signals and as adjuvants to activate specific anti-tumor immune responses, leading to the elimination of tumor cells and the formation of long-term immunological memory. ICD can be triggered by many anticancer treatment modalities, including photodynamic therapy (PDT). However, due to the variety of photosensitizers used and the lack of a universally adopted PDT protocol, there is a need to develop novel PDT with a proven ICD capability. In the present study, we characterized the abilities of two photoactive dyes to induce ICD in experimental glioma in vitro and in vivo. One dye was from the tetracyanotetra(aryl)porphyrazine group with 9-phenanthrenyl (pz I), and the other was from the 4-(4-fluorobenzyoxy)phenyl (pz III) group in the aryl frame of the macrocycle. We showed that after the photosensitizers penetrated into murine glioma GL261 cells, they localized predominantly in the Golgi apparatus and partially in the endoplasmic reticulum, providing efficient phototoxic activity against glioma GL261 cells upon light irradiation at a dose of 20 J/cm2 (λex 630 nm; 20 mW/cm2). We demonstrated that pz I-PDT and pz III-PDT can act as efficient ICD inducers when applied to glioma GL261 cells, facilitating the release of two crucial DAMPs (ATP and HMGB1). Moreover, glioma GL261 cells stimulated with pz I-PDT or pz III-PDT provided strong protection against tumor growth in a prophylactic subcutaneous glioma vaccination model. Finally, we showed that dendritic cell (DC) vaccines pulsed with the lysates of glioma GL261 cells pre-treated with pz-I-PDT or pz-III-PDT could act as effective inducers of adaptive anti-tumor immunity in an intracranial orthotopic glioma mouse model.
Collapse
Affiliation(s)
- Tikhon S. Redkin
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (T.S.R.); (E.E.S.); (M.O.S.)
| | - Ekaterina E. Sleptsova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (T.S.R.); (E.E.S.); (M.O.S.)
| | - Victoria D. Turubanova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (T.S.R.); (E.E.S.); (M.O.S.)
| | - Mariia O. Saviuk
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (T.S.R.); (E.E.S.); (M.O.S.)
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Svetlana A. Lermontova
- Sector of Chromophors for Medicine, G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., 603137 Nizhny Novgorod, Russia; (S.A.L.); (L.G.K.)
| | - Larisa G. Klapshina
- Sector of Chromophors for Medicine, G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., 603137 Nizhny Novgorod, Russia; (S.A.L.); (L.G.K.)
| | - Nina N. Peskova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (N.N.P.); (I.V.B.); (T.A.M.); (M.V.V.)
| | - Irina V. Balalaeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (N.N.P.); (I.V.B.); (T.A.M.); (M.V.V.)
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (N.N.P.); (I.V.B.); (T.A.M.); (M.V.V.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (N.N.P.); (I.V.B.); (T.A.M.); (M.V.V.)
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 125009 Moscow, Russia
| |
Collapse
|
4
|
Shilyagina N, Shestakova L, Peskova N, Lermontova S, Lyubova T, Klapshina L, Balalaeva I. Cyanoarylporphyrazine dyes: multimodal compounds for personalised photodynamic therapy. Biophys Rev 2023; 15:971-982. [PMID: 37975009 PMCID: PMC10643710 DOI: 10.1007/s12551-023-01134-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 11/19/2023] Open
Abstract
Photodynamic therapy is known as an effective primary and adjuvant anticancer treatment. Compounds with improved properties or additional modalities are still needed to create an 'ideal' photosensitizer. In this article, we review cyanoarylporphyrazine dyes for photodynamic (anticancer) therapy that we have synthesised to date. The review provides information on the chemistry of cyanoarylporphyrazines, photophysical properties, cellular uptake features and the use of various carriers for selective delivery of cyanoarylporphyrazines to the tumour. The potential of cyanoarylporphyrazines as photodynamic anti-tumour agents also has been evaluated. The most interesting feature of cyanoarylporphyrazines is the dependence of the fluorescence quantum yield and excited state lifetime on the viscosity of the medium, which makes it possible to use them as viscosity sensors in photodynamic therapy. In the future, we expect that the unique combination of photosensitizer and viscosity sensor properties of cyanoarylporphyrazines will provide a tool for dosimetry and tailoring treatment regimens in photodynamic therapy to the individual characteristics of each patient.
Collapse
Affiliation(s)
- N.Yu. Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603022 Nizhny Novgorod, Russia
| | - L.N. Shestakova
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603022 Nizhny Novgorod, Russia
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin str., 49, 603137 Nizhny Novgorod, Russia
| | - N.N. Peskova
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603022 Nizhny Novgorod, Russia
| | - S.A. Lermontova
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin str., 49, 603137 Nizhny Novgorod, Russia
| | - T.S. Lyubova
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin str., 49, 603137 Nizhny Novgorod, Russia
| | - L.G. Klapshina
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin str., 49, 603137 Nizhny Novgorod, Russia
| | - I.V. Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Lima E, Reis LV. Photodynamic Therapy: From the Basics to the Current Progress of N-Heterocyclic-Bearing Dyes as Effective Photosensitizers. Molecules 2023; 28:5092. [PMID: 37446758 DOI: 10.3390/molecules28135092] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy, an alternative that has gained weight and popularity compared to current conventional therapies in the treatment of cancer, is a minimally invasive therapeutic strategy that generally results from the simultaneous action of three factors: a molecule with high sensitivity to light, the photosensitizer, molecular oxygen in the triplet state, and light energy. There is much to be said about each of these three elements; however, the efficacy of the photosensitizer is the most determining factor for the success of this therapeutic modality. Porphyrins, chlorins, phthalocyanines, boron-dipyrromethenes, and cyanines are some of the N-heterocycle-bearing dyes' classes with high biological promise. In this review, a concise approach is taken to these and other families of potential photosensitizers and the molecular modifications that have recently appeared in the literature within the scope of their photodynamic application, as well as how these compounds and their formulations may eventually overcome the deficiencies of the molecules currently clinically used and revolutionize the therapies to eradicate or delay the growth of tumor cells.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Lucinda V Reis
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
6
|
Shestakova LN, Lyubova TS, Lermontova SA, Belotelov AO, Peskova NN, Klapshina LG, Balalaeva IV, Shilyagina NY. Comparative Analysis of Tetra(2-naphthyl)tetracyano-porphyrazine and Its Iron Complex as Photosensitizers for Anticancer Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14122655. [PMID: 36559148 PMCID: PMC9786040 DOI: 10.3390/pharmaceutics14122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Photodynamic therapy (PDT) is a rapidly developing modality of primary and adjuvant anticancer treatment. The main trends today are the search for new effective photodynamic agents and the creation of targeted delivery systems with the function of controlling the release of the agent in the tumor. Recently, the new group of cyanoarylporphyrazine dyes was reported, which combine the properties of photosensitizers and sensors of the local microenvironment. Such unique characteristics allow the release of the photosensitizer from the transport carrier to be assessed in real time in vivo. The aim of the present work was to compare the photophysical and photobiological properties of tetra(2-naphthyl)tetracyanoporphyrazine and its newly synthesized Fe(II) complex. We have shown that the chelation of the Fe(II) cation with the porphyrazine macrocycle leads to a decrease in molar extinction and an increase in the quantum yield of fluorescence and photostability. We demonstrate that the iron cation significantly affects the rate of dye accumulation in cells, the dark toxicity and photodynamic activity, and the direction of the changes depends on the particular cell line. However, in all the cases, the photodynamic index of a metal complex was higher than that of a metal-free base. In general, both of the compounds were found to be very promising for PDT, including for the use with transport delivery systems, and can be recommended for further in vivo studies.
Collapse
Affiliation(s)
- Lydia N. Shestakova
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Tatyana S. Lyubova
- Razuvaev Institute of Organomettalic Chemistry, Russian Academy of Sciences, St. Tropinina, 49, 603137 Nizhny Novgorod, Russia
| | - Svetlana A. Lermontova
- Razuvaev Institute of Organomettalic Chemistry, Russian Academy of Sciences, St. Tropinina, 49, 603137 Nizhny Novgorod, Russia
| | - Artem O. Belotelov
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Nina N. Peskova
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Larisa G. Klapshina
- Razuvaev Institute of Organomettalic Chemistry, Russian Academy of Sciences, St. Tropinina, 49, 603137 Nizhny Novgorod, Russia
| | - Irina V. Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Natalia Y. Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
- Correspondence:
| |
Collapse
|
7
|
Savyuk MO, Turubanova VD, Mishchenko TA, Lermontova SA, Klapshina LG, Krysko DV, Vedunova MV. Unraveling of Functional Activity of Primary Hippocampal Neuron-Glial Networks in Photodynamic Therapy Based on Tetracyanotetra(aryl)porphyrazines. Cells 2022; 11:cells11071212. [PMID: 35406776 PMCID: PMC8997601 DOI: 10.3390/cells11071212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
The current efforts in photodynamic therapy (PDT) of brain cancer are focused on the development of novel photosensitizers with improved photodynamic properties, targeted specific localization, and sensitivity to the irradiation dose, ensuring the effectiveness of PDT with fewer side effects for normal nerve tissue. Here, we characterize the effects of four photosensitizers of the tetracyanotetra(aryl)porphyrazine group (pz I–IV) on the functional activity of neuron-glial networks in primary hippocampal cultures in their application in normal conditions and under PDT. The data revealed that the application of pz I–IV leads to a significant decrease in the main parameters of the functional calcium activity of neuron-glial networks and pronounced changes in the network characteristics. The observed negative effects of pz I–IV were aggravated under PDT. Considering the significant restructuring of the functional architectonics of neuron-glial networks that can lead to severe impairments in synaptic transmission and loss of brain functions, and the feasibility of direct application of PDT based on pz I–IV in the therapy of brain tumors is highly controversial. Nevertheless, the unique properties of pz I–IV retain a great prospect of their use in the therapy of tumors of another origin and cellular metabolism.
Collapse
Affiliation(s)
- Maria O. Savyuk
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (M.O.S.); (V.D.T.); (T.A.M.); (D.V.K.)
| | - Victoria D. Turubanova
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (M.O.S.); (V.D.T.); (T.A.M.); (D.V.K.)
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
| | - Tatiana A. Mishchenko
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (M.O.S.); (V.D.T.); (T.A.M.); (D.V.K.)
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
| | - Svetlana A. Lermontova
- Sector of Chromophors for Medicine, G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin st., 603137 Nizhny Novgorod, Russia; (S.A.L.); (L.G.K.)
| | - Larisa G. Klapshina
- Sector of Chromophors for Medicine, G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin st., 603137 Nizhny Novgorod, Russia; (S.A.L.); (L.G.K.)
| | - Dmitri V. Krysko
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (M.O.S.); (V.D.T.); (T.A.M.); (D.V.K.)
- Cell Death Investigation and Therapy Laboratory (CDIT), Department of Human Structure and Repair, Ghent University, C. Heymanslaan 10, Building B3, 4th Floor, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Maria V. Vedunova
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (M.O.S.); (V.D.T.); (T.A.M.); (D.V.K.)
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
- Correspondence: ; Tel.: +7-915-937-55-55
| |
Collapse
|