1
|
Saeed M, Shoaib A, Tasleem M, Al-Shammary A, Kausar MA, El Asmar Z, Abdelgadir A, Sulieman AME, Ahmed EH, Zahin M, Ansari IA. Role of Alkannin in the Therapeutic Targeting of Protein-Tyrosine Phosphatase 1B and Aldose Reductase in Type 2 Diabetes: An In Silico and In Vitro Evaluation. ACS OMEGA 2024; 9:36099-36113. [PMID: 39220541 PMCID: PMC11359625 DOI: 10.1021/acsomega.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Alkannin is a plant-derived naphthoquinone that is isolated from the Boraginaceae family plants. In our previous studies, we found that shikonin, which is the R-enantiomer of alkannin, has potent antidiabetic activity by inhibiting the action of the aldose reductase (AR) enzyme and the protein-tyrosine phosphatase 1B (PTP1B). Therefore, in this study, we aim to explore the antidiabetic effect of alkannin targeting PTP1B and AR by employing in silico and in vitro techniques. For in silico, we used different parameters such as ADMET analysis, molecular docking, MD simulation, Root Mean Square Deviation (RMSD), protein-ligand mapping, and free binding energy calculation. The in vitro evaluation was done by assessing the inhibitory activity and enzyme kinetics of PTP1B and AR inhibition by alkannin. The in silico studies indicate that alkannin possesses favorable pharmacological properties and possesses strong binding affinity for diabetes target proteins. Hydrogen bonds (Val297, Ala299, Leu300, and Ser302) and hydrophobic interactions (Trp20, Val47, Tyr48, Trp79, Trp111, Phe122, Trp219, Val297, Cys298, Ala299, Leu300, and Leu301) are established by the compound, which potentially improves specificity and aids in the stabilization of the protein-ligand complex. The results from in vitro studies show a potent dose-dependent PTP1B inhibitory activity with an IC50 value of 19.47 μM, and toward AR it was estimated at 22.77 μM. Thus, from the results it is concluded that a low IC50 value of alkannin for both PTP1B and AR along with favorable pharmacological properties and optimal intra-molecular interactions indicates its utilization as a potential drug candidate for the management of diabetes and its end complications.
Collapse
Affiliation(s)
- Mohd Saeed
- Department
of Biology, College of Sciences, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Ambreen Shoaib
- Department
of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Munazzah Tasleem
- Center
for Global Health Research, Saveetha Medical
College and Hospital, Chennai 602105, India
| | - Asma Al-Shammary
- Department
of Public Health, College of Public Health and Health Informatics, University of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Mohd Adnan Kausar
- Department
of Biochemistry, College of Medicine, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Zeina El Asmar
- Department
of Biology, College of Sciences, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Abdelmuhsin Abdelgadir
- Department
of Biology, College of Sciences, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Abdel Moneim E. Sulieman
- Department
of Biology, College of Sciences, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Enas Haridy Ahmed
- University
of Ha’il, Faculty of Medicine
Anatomy Department, Ha’il, KSA, Ain Shams University, Faculty
of Medicine Anatomy and Embryology Department, Cairo 11566, Egypt
| | - Maryam Zahin
- James
Graham
Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | | |
Collapse
|
2
|
Radhakrishnan A, Gangopadhyay R, Sharma C, Kapardar RK, Sharma NK, Srivastav R. Unwinding Helicase MCM Functionality for Diagnosis and Therapeutics of Replication Abnormalities Associated with Cancer: A Review. Mol Diagn Ther 2024; 28:249-264. [PMID: 38530633 DOI: 10.1007/s40291-024-00701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The minichromosome maintenance (MCM) protein is a component of an active helicase that is essential for the initiation of DNA replication. Dysregulation of MCM functions contribute to abnormal cell proliferation and genomic instability. The interactions of MCM with cellular factors, including Cdc45 and GINS, determine the formation of active helicase and functioning of helicase. The functioning of MCM determines the fate of DNA replication and, thus, genomic integrity. This complex is upregulated in precancerous cells and can act as an important tool for diagnostic applications. The MCM protein complex can be an important broad-spectrum therapeutic target in various cancers. Investigations have supported the potential and applications of MCM in cancer diagnosis and its therapeutics. In this article, we discuss the physiological roles of MCM and its associated factors in DNA replication and cancer pathogenesis.
Collapse
Affiliation(s)
| | - Ritwik Gangopadhyay
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | | | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. DY Patil Biotechnology and Bioinformatics Institute, Dr. DY Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
- Department of Science and Technology, Ministry of Science and Technology, New Delhi, India.
| |
Collapse
|
3
|
Borges RM, de Assis Ferreira G, Campos MM, Teixeira AM, das Neves Costa F, Chagas FO. Data Base similarity (DBsimilarity) of natural products to aid compound identification on MS and NMR pipelines, similarity networking, and more. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:93-101. [PMID: 37592443 DOI: 10.1002/pca.3277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION We developed Data Base similarity (DBsimilarity), a user-friendly tool designed to organize structure databases into similarity networks, with the goal of facilitating the visualization of information primarily for natural product chemists who may not have coding experience. METHOD DBsimilarity, written in Jupyter Notebooks, converts Structure Data File (SDF) files into Comma-Separated Values (CSV) files, adds chemoinformatics data, constructs an MZMine custom database file and an NMRfilter candidate list of compounds for rapid dereplication of MS and 2D NMR data, calculates similarities between compounds, and constructs CSV files formatted into similarity networks for Cytoscape. RESULTS The Lotus database was used as a source for Ginkgo biloba compounds, and DBsimilarity was used to create similarity networks including NPClassifier classification to indicate biosynthesis pathways. Subsequently, a database of validated antibiotics from natural products was combined with the G. biloba compounds to identify promising compounds. The presence of 11 compounds in both datasets points to possible antibiotic properties of G. biloba, and 122 compounds similar to these known antibiotics were highlighted. Next, DBsimilarity was used to filter the NPAtlas database (selecting only those with MIBiG reference) to identify potential antibacterial compounds using the ChEMBL database as a reference. It was possible to promptly identify five compounds found in both databases and 167 others worthy of further investigation. CONCLUSION Chemical and biological properties are determined by molecular structures. DBsimilarity enables the creation of interactive similarity networks using Cytoscape. It is also in line with a recent review that highlights poor biological plausibility and unrealistic chromatographic behaviors as significant sources of errors in compound identification.
Collapse
Affiliation(s)
- Ricardo M Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela de Assis Ferreira
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Martins Campos
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrew Magno Teixeira
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda das Neves Costa
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Oliveira Chagas
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Wu HY, Luo LF, Wei F, Jiang HM. Comprehensive clinicopathological significance and putative transcriptional mechanisms of Forkhead box M1 factor in hepatocellular carcinoma. World J Surg Oncol 2023; 21:366. [PMID: 38001498 PMCID: PMC10675979 DOI: 10.1186/s12957-023-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The Forkhead box M1 factor (FOXM1) is a crucial activator for cancer cell proliferation. While FOXM1 has been shown to promote hepatocellular carcinoma (HCC) progression, its transcriptional mechanisms remain incompletely understood. METHODS We performed an in-house tissue microarray on 313 HCC and 37 non-HCC tissue samples, followed by immunohistochemical staining. Gene chips and high throughput sequencing data were used to assess FOXM1 expression and prognosis. To identify candidate targets of FOXM1, we comprehensively reanalyzed 41 chromatin immunoprecipitation followed by sequencing (ChIP-seq) data sets. We predicted FOXM1 transcriptional targets in HCC by intersecting candidate FOXM1 targets with HCC overexpressed genes and FOXM1 correlation genes. Enrichment analysis was employed to address the potential mechanisms of FOXM1 underlying HCC. Finally, single-cell RNA sequencing analysis was performed to confirm the transcriptional activity of FOXM1 on its predicted targets. RESULTS This study, based on 4235 HCC tissue samples and 3461 non-HCC tissue samples, confirmed the upregulation of FOXM1 in HCC at mRNA and protein levels (standardized mean difference = 1.70 [1.42, 1.98]), making it the largest multi-centered study to do so. Among HCC patients, FOXM1 was increased in Asian and advanced subgroups, and high expression of FOXM1 had a strong ability to differentiate HCC tissue from non-HCC tissue (area under the curve = 0.94, sensitivity = 88.72%, specificity = 87.24%). FOXM1 was also shown to be an independent exposure risk factor for HCC, with a pooled hazard ratio of 2.00 [1.77, 2.26]. The predicted transcriptional targets of FOXM1 in HCC were predominantly enriched in nuclear division, chromosomal region, and catalytic activity acting on DNA. A gene cluster encoding nine transcriptional factors was predicted to be positively regulated by FOXM1, promoting the cell cycle signaling pathway in HCC. Finally, the transcriptional activity of FOXM1 and its targets was supported by single-cell analysis of HCC cells. CONCLUSIONS This study not only confirmed the upregulation of FOXM1 in HCC but also identified it as an independent risk factor. Moreover, our findings enriched our understanding of the complex transcriptional mechanisms underlying HCC pathogenesis, with FOXM1 potentially promoting HCC progression by activating other transcription factors within the cell cycle pathway.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Medical Experimental Center, The First People's Hospital of Nanning, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Li-Feng Luo
- Department of Pathology, The First People's Hospital of Nanning, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Fang Wei
- Department of Pathology, The First People's Hospital of Nanning, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hong-Mian Jiang
- Department of Pathology, The First People's Hospital of Nanning, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
5
|
Mechanism of Magnolia Volatile Oil in the Treatment of Acute Pancreatitis Based on GC-MS, Network Pharmacology, and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:3503888. [PMID: 36798729 PMCID: PMC9928509 DOI: 10.1155/2023/3503888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/23/2022] [Accepted: 12/26/2022] [Indexed: 02/10/2023]
Abstract
Objective Magnoliae officinalis cortex (MOC) is one of the most frequently used traditional Chinese medicine (TCM) for the treatment of acute pancreatitis (AP). Magnolia volatile oil (MVO) is considered to be one of the main active ingredients in MOC for AP treatment. However, the underlying mechanism of MVO in AP therapy is unknown. Methods An integrated strategy of gas chromatography-mass spectrum (GC-MS), network pharmacology, and molecular docking simulation was employed to predict underlying mechanism of MVO in AP treatment. First, the compounds of MVO were identified by GC-MS, and the targets of the identified characteristic compounds were collected from several databases, as well as AP-related targets. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out to obtain the mechanism. Moreover, the binding activity between core therapeutic targets and their corresponding compounds was evaluated by molecular docking simulation. Results GC-MS results showed a total of 35 compounds that appeared in at least 18 out of 20 chromatograms were considered as characteristic compounds of MVO, and 33 compounds of those were identified. Network analysis demonstrated that 33 compounds regulated 142 AP-related targets. Of those, 8 compounds (α-eudesmol, γ-eudesmol, (-)-terpinen-4-ol, terpineol, hinesol, linalool, borneol, and β-eudesmol) and 8 targets (TNF, IL-1β, PPARγ, PPARα, PTGS2, NCOA1, CNR1, and ESR1) have a close relationship with AP treatment and were recognized as the key active compounds and the core therapeutic targets, respectively. The 142 targets were involved in both inflammation and calcium overload-related biological pathways, such as neuroactive ligand-receptor interaction, estrogen, MAPK, and calcium signaling pathway. Moreover, molecular docking simulation indicated that the 8 core therapeutic targets strongly interacted with their corresponding compounds. Conclusions In summary, the present study elucidated that the efficacy of MVO in AP treatment might be attributed to anti-inflammation and inhibition of calcium overload through multicomponents and multitargets.
Collapse
|
6
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
7
|
Pharmacology Mechanism of Polygonum Bistorta in Treating Ulcerative Colitis Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022. [DOI: 10.1155/2022/6461560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aim. Ulcerative colitis (UC) is a refractory gastrointestinal disease. The study aimed to expound the mechanism of Polygonum bistorta (PB) in treating UC by network pharmacology, molecular docking, and experiment verification. Methods. The compositions and targets of PB and UC-associated targets were obtained by searching the websites and the literature. The potential mechanism of PB in the treatment of UC was predicted by protein-protein interaction network construction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecule docking was performed by AutoDock. In vitro experiments explored the mechanism of quercetin (Que), the main active composition of PB, in treating UC. Results. Six compositions, 139 PB targets, and 934 UC-associated targets were obtained. 93 overlapping targets between PB and UC were identified, and 18 of them were the core targets. 467 biological processes, 10 cell components, and 30 molecular functions were obtained by GO analysis. 102 pathways were enriched through KEGG analysis. Among them, the IL-17 signaling pathway had high importance. The core targets FOS, JUN, IL-1β, CCL2, CXCL8, and MMP9 could dock with Que successfully. Act1, TRAF6, FOS, and JUN were identified by KEGG as the key proteins of the IL-17 signaling pathway. The expressions of the abovementioned proteins were increased in Caco-2 cells stimulated by Dextran sulfate sodium and decreased after being treated by Que. Conclusion. PB might treat UC by downregulating the IL-17 signaling pathway. It is worth doing further research on PB treating UC in vivo.
Collapse
|
8
|
Identification of Potential Molecular Targets and Active Ingredients of Mingmu Dihuang Pill for the Treatment of Diabetic Retinopathy Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2896185. [DOI: 10.1155/2022/2896185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022]
Abstract
Objective. Mingmu Dihuang Pill (MMDHP) is a traditional Chinese formula that has shown remarkable improvements of dry eyes, tearing, and blurry vision; however, the mechanisms underlying MMDHP treatment for diabetic retinopathy have not been fully understood. This study is aimed at identifying the molecular targets and active ingredients of MMDHP for the treatment of diabetic retinopathy based on network pharmacology. Methods. All active ingredients of MMDHP were retrieved from TCMSP and BATMAN-TCM databases, and the targets of active ingredients of MMDHP were predicted on the SwissTargetPrediction website. Diabetic retinopathy-related target sets were retrieved from GeneCards and OMIM databases, and the intersecting targets between targets of active ingredients of MMDHP and potential therapeutic targets of diabetic retinopathy were collected to generate the traditional Chinese medicine-ingredient-target-diabetic retinopathy network and to create the protein-protein interaction network. In addition, GO terms and KEGG pathway enrichment analyses were performed to identify the potential pathways, and molecular docking was employed to verify the binding of active ingredients of MMDHP to key targets of diabetic retinopathy. Results. Network pharmacology predicted 183 active ingredients and 904 targets from MMDHP, and 203 targets were intersected with the therapeutic targets of diabetic retinopathy. The top 10 hub targets included PIK3RA, TP53, SRC, JUN, HRAS, AKT1, VEGFA, EGFR, ESR1, and PI3KCA. GO terms and KEGG pathway enrichment analyses identified AGE-RAGE, PI3K-AKT, and Rap1 signaling pathways as major pathways involved in MMDHP treatment for diabetic retinopathy. Molecular docking confirmed a good binding affinity of active ingredients of MMDHP, including luteolin, acacetin, naringenin, and alisol B, with AKT1, SRC, and VEGFA as the three key targets of diabetic retinopathy. Conclusion. MMDHP may be effective for the treatment of diabetic retinopathy through active ingredients luteolin, acacetin, naringenin, and alisol B via AKT1, SRC, and VEGFA in AGE-RAGE, PI3K-AKT, and Rap1 signaling pathways.
Collapse
|
9
|
Zhang X, Chen H, Lin H, Wen R, Yang F. High-Throughput Screening and Molecular Dynamics Simulation of Natural Products for the Identification of Anticancer Agents against MCM7 Protein. Appl Bionics Biomech 2022; 2022:8308192. [PMID: 36157125 PMCID: PMC9499818 DOI: 10.1155/2022/8308192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022] Open
Abstract
Minichromosome maintenance complex component 7 (MCM7) belongs to the minichromosome maintenance family that is necessary for the initiation of eukaryotic DNA replication. Overexpression of the MCM7 protein is linked to cellular proliferation and is accountable for critical malignancy in many cancers. Mechanistically, the suppression of MCM7 greatly lowers the cellular proliferation associated with cancer. Advances in immunotherapy have revolutionized treatments for many types of cancer. To date, no effective small molecular candidate has been found that can stop the advancement of cancer produced by the MCM7 protein. Here, we present the findings of methods that used a combination of structure-assisted drug design, high-throughput virtual screening, and simulations studies to swiftly generate lead compounds against MCM7 protein. In the current study, we designed efficient compounds that may combat all emerging cancer targeting the common MCM7 protein. For this objective, a molecular docking and molecular dynamics (MD) simulation-based virtual screening of 29,000 NPASS library was carried out. As a consequence of using specific pharmacological, physiological, and ADMET criteria, four new prevailing compounds, NPA000018, NPA000111, NPA00305, and NPA014826, were successfully selected. The MD simulations were also used for a time period of 50 ns to evaluate for stability and dynamics behavior of the compounds. Eventually, compounds NPA000111 and NPA014826 were found to be highly potent against MCM7 protein. According to our results, the selected compounds may be effective in treating certain cancer subtypes, for which additional follow-up experimental validation is recommended.
Collapse
Affiliation(s)
- Xin Zhang
- Breast Surgery Department, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Hui Chen
- Breast Surgery Department, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Hui Lin
- Breast Surgery Department, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Ronglan Wen
- Breast Surgery Department, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Fan Yang
- Breast Surgery Department, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| |
Collapse
|
10
|
Kullappan M, Benedict BA, Rajajagadeesan A, Baskaran P, Periadurai ND, Ambrose JM, Gandhamaneni SH, Nakkella AK, Agarwal A, Veeraraghavan VP, Surapaneni KM. Ellagic Acid as a Potential Inhibitor against the Nonstructural Protein NS3 Helicase of Zika Virus: A Molecular Modelling Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2044577. [PMID: 36046457 PMCID: PMC9420600 DOI: 10.1155/2022/2044577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Zika virus is a member of the Flaviviridae family and genus Flavivirus, which has a phylogenetic relationship with spondweni virus. It spreads to humans through a mosquito bite. To identify potential inhibitors for the Zika virus with biosafety, we selected natural antiviral compounds isolated from plant sources and screened against NS3 helicase of the Zika virus. The enzymatic activity of the NS3 helicase is associated with the C-terminal region and is concerned with RNA synthesis and genome replication. It serves as a crucial target for the Zika virus. We carried out molecular docking for the target NS3 helicase against the selected 25 phytochemicals using AutoDock Vina software. Among the 25 plant compounds, we identified NS3 helicase-ellagic acid (-9.9 kcal/mol), NS3 helicase-hypericin (-9.8 kcal/mol), and NS3 helicase-pentagalloylglucose (-9.5 kcal/mol) as the best binding affinity compounds based on their binding energies. To understand the stability of these complexes, molecular dynamic simulations were executed and the trajectory analysis exposed that the NS3 helicase-ellagic acid complex possesses greater stability than the other two complexes such as NS3 helicase-hypericin and NS3 helicase-pentagalloylglucose. The ADMET property prediction of these compounds resulted in nontoxicity and noncarcinogenicity.
Collapse
Affiliation(s)
- Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Balakrishnan Anna Benedict
- Department of Chemistry, Panimalar Institute of Technology, Poonamallee, Chennai, 600 123 Tamil Nadu, India
| | - Anusha Rajajagadeesan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Padmasini Baskaran
- Department of Emergency Medicine, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Chennai, 600 123 Tamil Nadu, India
| | - Nanthini Devi Periadurai
- Departments of Microbiology and Molecular Virology, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Jenifer Mallavarpu Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Sri Harshini Gandhamaneni
- Department of General Medicine, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Chennai, 600 123 Tamil Nadu, India
| | - Aruna Kumari Nakkella
- Department of Engineering Chemistry, Dr. B R Ambedkar University, Etcherla, Srikakulam, 532 410 Andhra Pradesh, India
| | - Alok Agarwal
- Department of Chemistry, Chinmaya Degree College, BHEL, Haridwar, 249403 Uttarakhand, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, 600 123 Tamil Nadu, India
| |
Collapse
|
11
|
Sriram N, Mukherjee S, Sah MK. Gene expression profiling and protein-protein interaction analysis reveals the dynamic role of MCM7 in Alzheimer's disorder and breast cancer. 3 Biotech 2022; 12:146. [PMID: 35698583 PMCID: PMC9187790 DOI: 10.1007/s13205-022-03207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/14/2022] [Indexed: 11/01/2022] Open
Abstract
The interrelation of cancer and Alzheimer's disorder (AD)-associated molecular mechanisms, reported last decade, paved the path for drug discoveries. In this direction, while chemotherapy is well established for breast cancer (BC), the detection and targeted therapy for AD is not advanced due to a lack of recognized peripheral biomarkers. The present study aimed to find diagnostic and prognostic molecular signature markers common to both BC and AD for possible drug targeting and repurposing. For these disorders, two corresponding microarray datasets (GSE42568, GSE33000) were used for identifying the differentially expressed genes (DEGs), resulting in recognition of CD209 and MCM7 as the two common players. While the CD209 gene was upregulated in both disorders and has been studied vastly, the MCM7 gene showed a strikingly reverse pattern of expression level, downregulated in the case of BC while upregulated in the case of AD. Thus, the MCM7 gene was further analyzed for expression, predictions, and validations of its structure and protein-protein interaction (PPI) for the possible development of new treatment methods for AD. The study concluded with indicative drug repurposing studies to check the effect of existing clinically approved drugs for BC for rectifying the expression levels of the mutated MCM7 gene in AD. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03207-1.
Collapse
Affiliation(s)
- Navneeth Sriram
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab 144011 India
| | - Sunny Mukherjee
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab 144011 India
| | - Mahesh Kumar Sah
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab 144011 India
| |
Collapse
|
12
|
Wu S, Liu S, Li Y, Liu C, Pan H. Lestaurtinib Has the Potential to Inhibit the Proliferation of Hepatocellular Carcinoma Uncovered by Bioinformatics Analysis and Pharmacological Experiments. Front Cell Dev Biol 2022; 10:837428. [PMID: 35646925 PMCID: PMC9136166 DOI: 10.3389/fcell.2022.837428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Patients diagnosed with hepatocellular carcinoma (HCC) seek a satisfactory prognosis. However, most HCC patients present a risk of recurrence, thus highlighting the lack of effectiveness of current treatments and the urgent need for improved treatment options. The purpose of this study was to identify new candidate factors in the STAT family, which is involved in hepatocellular carcinogenesis, and new targets for the treatment of HCC. Bioinformatics web resources, including Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), The Human Protein Atlas (HPA), Tumor Immune Estimation Resource (TIMER), and GSCALite, were used to identify candidate genes among the STAT family in HCC. STAT1 was significantly overexpressed in hepatocellular carcinoma. More meaningfully, the high STAT1 expression was significantly associated with poor prognosis. Therefore, STAT1 is expected to be a therapeutic target. The JAK2 inhibitor lestaurtinib was screened by the Genomics of Cancer Drug Sensitivity Project (GDSC) analysis. Pharmacological experiments showed that lestaurtinib has the ability to prevent cell migration and colony formation from single cells. We also found that STAT1 is involved in inflammatory responses and immune cell infiltration. Immune infiltration analysis revealed a strong association between STAT1 levels and immune cell abundance, immune biomarker levels, and immune checkpoints. This study suggests that STAT1 may be a key oncogene in hepatocellular carcinoma and provides evidence that the JAK2 inhibitor lestaurtinib is a potent antiproliferative agent that warrants further investigation as a targeted therapy for HCC.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Medicine, Qingdao University, Qingdao, China
| | - Shihai Liu
- Medical Animal Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Li
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changchang Liu
- Medical Animal Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huazheng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Huazheng Pan,
| |
Collapse
|
13
|
Kelm JM, Samarbakhsh A, Pillai A, VanderVere-Carozza PS, Aruri H, Pandey DS, Pawelczak KS, Turchi JJ, Gavande NS. Recent Advances in the Development of Non-PIKKs Targeting Small Molecule Inhibitors of DNA Double-Strand Break Repair. Front Oncol 2022; 12:850883. [PMID: 35463312 PMCID: PMC9020266 DOI: 10.3389/fonc.2022.850883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
The vast majority of cancer patients receive DNA-damaging drugs or ionizing radiation (IR) during their course of treatment, yet the efficacy of these therapies is tempered by DNA repair and DNA damage response (DDR) pathways. Aberrations in DNA repair and the DDR are observed in many cancer subtypes and can promote de novo carcinogenesis, genomic instability, and ensuing resistance to current cancer therapy. Additionally, stalled or collapsed DNA replication forks present a unique challenge to the double-strand DNA break (DSB) repair system. Of the various inducible DNA lesions, DSBs are the most lethal and thus desirable in the setting of cancer treatment. In mammalian cells, DSBs are typically repaired by the error prone non-homologous end joining pathway (NHEJ) or the high-fidelity homology directed repair (HDR) pathway. Targeting DSB repair pathways using small molecular inhibitors offers a promising mechanism to synergize DNA-damaging drugs and IR while selective inhibition of the NHEJ pathway can induce synthetic lethality in HDR-deficient cancer subtypes. Selective inhibitors of the NHEJ pathway and alternative DSB-repair pathways may also see future use in precision genome editing to direct repair of resulting DSBs created by the HDR pathway. In this review, we highlight the recent advances in the development of inhibitors of the non-phosphatidylinositol 3-kinase-related kinases (non-PIKKs) members of the NHEJ, HDR and minor backup SSA and alt-NHEJ DSB-repair pathways. The inhibitors described within this review target the non-PIKKs mediators of DSB repair including Ku70/80, Artemis, DNA Ligase IV, XRCC4, MRN complex, RPA, RAD51, RAD52, ERCC1-XPF, helicases, and DNA polymerase θ. While the DDR PIKKs remain intensely pursued as therapeutic targets, small molecule inhibition of non-PIKKs represents an emerging opportunity in drug discovery that offers considerable potential to impact cancer treatment.
Collapse
Affiliation(s)
- Jeremy M. Kelm
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Athira Pillai
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | | | - Hariprasad Aruri
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Deepti S. Pandey
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | | | - John J. Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,NERx Biosciences, Indianapolis, IN, United States,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States,*Correspondence: Navnath S. Gavande, ; orcid.org/0000-0002-2413-0235
| |
Collapse
|