1
|
Wang CL, Yang BW, Wang XY, Chen X, Li WD, Zhai HY, Wu Y, Cui MY, Wu JH, Meng QH, Zhang N. Targeting colorectal cancer with Herba Patriniae and Coix seed: Network pharmacology, molecular docking, and in vitro validation. World J Gastrointest Oncol 2024; 16:3539-3558. [PMID: 39171161 PMCID: PMC11334031 DOI: 10.4251/wjgo.v16.i8.3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Herba Patriniae and Coix seed (HC) constitute a widely utilized drug combination in the clinical management of colorectal cancer (CRC) that is known for its diuretic, anti-inflammatory, and swelling-reducing properties. Although its efficacy has been demonstrated in a clinical setting, the active compounds and their mechanisms of action in CRC treatment remain to be fully elucidated. AIM To identify the active, CRC-targeting components of HC and to elucidate the mechanisms of action involved. METHODS Active HC components were identified and screened using databases. Targets for each component were predicted. CRC-related targets were obtained from human gene databases. Interaction targets between HC and CRC were identified. A "drug-ingredient-target" network was created to identify the core components and targets involved. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to elucidate the key pathways involved. Molecular docking between core targets and key components was executed. In vitro experiments validated core monomers. RESULTS Nineteen active components of HC were identified, with acacetin as the primary active compound. The predictive analysis identified 454 targets of the active compounds in HC. Intersection mapping with 2685 CRC-related targets yielded 171 intervention targets, including 30 core targets. GO and KEGG analyses indicated that HC may influence the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Molecular docking showed that acacetin exhibited an optimal interaction with AKT1, identifying PI3K, AKT, and P53 as key genes likely targeted by HC during CRC treatment. Acacetin inhibited HT-29 cell proliferation and migration, as well as promoted apoptosis, in vitro. Western blotting analysis revealed increased p53 and cleaved caspase-3 expression and decreased levels of p-PI3K, p-Akt, and survivin, which likely contributed to CRC apoptosis. CONCLUSION Acacetin, the principal active compound in the HC pair, inhibited the proliferation and migration of HT-29 cells and promoted apoptosis through the PI3K/Akt/p53 signaling pathway.
Collapse
Affiliation(s)
- Cheng-Lei Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Bing-Wei Yang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xin-Yan Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xue Chen
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wei-Dong Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Department of Scientific Research Management, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hao-Yu Zhai
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ying Wu
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Mu-Yao Cui
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jia-He Wu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing-Hui Meng
- School of Clinical Medicine Qinghai University, Xining 810000, Qinghai Province, China
| | - Nan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
2
|
Xie L, Ma C, Li X, Chen H, Han P, Lin L, Huang W, Xu M, Lu H, Du Z. Efficacy of Glycyrrhetinic Acid in the Treatment of Acne Vulgaris Based on Network Pharmacology and Experimental Validation. Molecules 2024; 29:2345. [PMID: 38792208 PMCID: PMC11123902 DOI: 10.3390/molecules29102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Glycyrrhetinic acid (GA) is a saponin compound, isolated from licorice (Glycyrrhiza glabra), which has been wildly explored for its intriguing pharmacological and medicinal effects. GA is a triterpenoid glycoside displaying an array of pharmacological and biological activities, including anti-inflammatory, anti-bacterial, antiviral and antioxidative properties. In this study, we investigated the underlying mechanisms of GA on acne vulgaris through network pharmacology and proteomics. After the intersection of the 154 drug targets and 581 disease targets, 37 therapeutic targets for GA against acne were obtained. A protein-protein interaction (PPI) network analysis highlighted TNF, IL1B, IL6, ESR1, PPARG, NFKB1, STAT3 and TLR4 as key targets of GA against acne, which is further verified by molecular docking. The experimental results showed that GA inhibited lipid synthesis in vitro and in vivo, improved the histopathological damage of skin, prevented mast cell infiltration and decreased the level of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6. This study indicates that GA may regulate multiple pathways to improve acne symptoms, and the beneficial effects of GA against acne vulgaris might be through the regulation of sebogenesis and inflammatory responses.
Collapse
Affiliation(s)
- Lingna Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (L.X.); (C.M.); (H.C.)
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Congwei Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (L.X.); (C.M.); (H.C.)
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Xinyu Li
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Huixiong Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (L.X.); (C.M.); (H.C.)
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Cité, 45 Rue des Saints-Pères, CEDEX 06, 75270 Paris, France
| | - Ping Han
- Foshan Allan Conney Biotechnology Co., Ltd., Foshan 528231, China; (P.H.); (L.L.)
| | - Li Lin
- Foshan Allan Conney Biotechnology Co., Ltd., Foshan 528231, China; (P.H.); (L.L.)
| | - Weiqiang Huang
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Menglu Xu
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Hailiang Lu
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (L.X.); (C.M.); (H.C.)
| |
Collapse
|
3
|
Mu BX, Li Y, Ye N, Liu S, Zou X, Qian J, Wu C, Zhuang Y, Chen M, Zhou JY. Understanding apoptotic induction by Sargentodoxa cuneata-Patrinia villosa herb pair via PI3K/AKT/mTOR signalling in colorectal cancer cells using network pharmacology and cellular studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117342. [PMID: 37879505 DOI: 10.1016/j.jep.2023.117342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sargentodoxa cuneata (Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson, DXT)-Patrinia villosa(Patrinia villosa (Thunb.) Dufr, BJC) constitutes a commonly employed herb pair in Chinese medicine for colorectal cancer (CRC) treatment. Modern pharmacological investigations have revealed the anticancer activities of both Sargentodoxa cuneata and Patrinia villosa. Nevertheless, comprehensive studies are required to discern the specific antitumor active ingredients and mechanism of action when these two herbs are used in combination. AIM OF THE STUDY Through the integration of network pharmacology, molecular docking techniques, experimental assays, and bioinformatics analysis, our study aims to forecast the active ingredients, potential targets, and molecular mechanisms underlying the therapeutic efficacy of this herb pair against CRC. MATERIALS AND METHODS Plant names (1, Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson; 2, Patrinia villosa (Thunb.) Dufr.) have been verified through WorldFloraOnline (www.worldFloraonline.org) and MPNs (http://mpns.kew.org). The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) were utilized for screening the active ingredients of the herb pair. The PharmMapper database was employed to predict the target proteins for each active ingredient. CRC-related targets were obtained from the Genecards database, Online Mendelian Inheritance in Man (OMIM) database, Disease Gene Network (DisGeNET) database, and Therapeutic Target Database (TTD). Common targets were identified by intersecting the target proteins of all active ingredients with CRC-related targets. Protein-protein interactions (PPI) for the common target proteins were constructed using the String database and Cytoscape 3.9.1 software. Network topology analysis facilitated the identification of core targets. These core targets were subjected to enrichment analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the Metascape database. Molecular docking was performed using Discovery Studio 2019 to investigate the interactions between the active ingredients and core target proteins. The core targets were validated through bioinformatics analysis using GEPIA, HPA, and the cBioPortal database. Finally, a series of experiments were conducted to further validate the results in vitro. RESULT A total of 15 active ingredients and 255 herb targets were identified, resulting in 66 common targets in conjunction with 6113 disease targets. The PPI analysis highlighted AKT1, EGFR, CASP3, SRC, and ESR1 as core targets. KEGG enrichment analysis indicated significant enrichment in the PI3K-AKT signaling pathway, a pathway associated with cancer. Molecular docking experiments confirmed favorable interactions between dihydroguaiaretic acid and the core target proteins (AKT1, EGFR, CASP3, and ESR1). Bioinformatics analysis revealed differential expression of EGFR and CASP3 in normal and CRC tissues. Cellular experiments further verified that dihydroguaiaretic acid induces apoptosis in colorectal cancer cells through the PI3K-AKT signaling pathway. CONCLUSION Our network pharmacology study has elucidated that the Sargentodoxa cuneata-Patrinia villosa herb pair exerts the negative regulation of the PI3K/AKT/mTOR signaling pathway, ultimately leading to the induction of apoptosis in colorectal cancer cells. This research has predicted and validated the active ingredients, potential targets, and molecular mechanisms of Sargentodoxa cuneata-Patrinia villosa in the treatment of CRC, providing scientific evidence for the use of traditional Chinese medicine in managing CRC.
Collapse
Affiliation(s)
- Bai-Xiang Mu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Yuanxiang Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Ningyuan Ye
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Shenlin Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Xi Zou
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Jun Qian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Cunen Wu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu, 210046, China.
| | - Yuwen Zhuang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Min Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Jin-Yong Zhou
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
4
|
Li J, Shang L, Zhou F, Wang S, Liu N, Zhou M, Lin Q, Zhang M, Cai Y, Chen G, Yang S. Herba Patriniae and its component Isovitexin show anti-colorectal cancer effects by inducing apoptosis and cell-cycle arrest via p53 activation. Biomed Pharmacother 2023; 168:115690. [PMID: 37939611 DOI: 10.1016/j.biopha.2023.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Colorectal cancer (CRC) is the most prevalent cancer of the digestive tract. Herba Patriniae (also known as Bai Jiang Cao, HP) have been widely used to manage diarrhea, ulcerative colitis, and several cancers, including CRC. Nonetheless, the molecular mechanisms underlying the pharmacological action of HP on CRC remain unclear. This study investigated the underlying mechanisms of HP against CRC using network pharmacology analysis and in vitro and in vivo experiments. The results revealed nine bioactive compounds of HP. Furthermore, 3460 CRC-related targets of the identified active compounds were predicted from the Gene Expression Omnibus (GEO) database. Furthermore, 65 common targets were identified through the intersection of two related targets. Moreover, ten hub genes, including CDK4, CDK2, CDK1, CCND1, CCNB1, CCNA2, MYC, E2F1, CHEK1, and CDKN1A were identified through the topological analysis. Meanwhile, the GO and KEGG pathway analysis revealed that the core target genes were majorly enriched in the p53 and HIF-1 signaling pathways. Moreover, HP promoted apoptosis and suppressed cell proliferation by activating the p53 signaling pathway in a dose-dependent manner, while a similar effect was observed for Isovitexin (the primary component of HP). Overall, this study provides valuable insights into the underlying mechanisms of HP and its component Isovitexin against CRC, providing a theoretical foundation for additional experimental verification of its clinical application.
Collapse
Affiliation(s)
- Jinxiao Li
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luorui Shang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangyuan Zhou
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhan Wang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Liu
- Rehabilitation Department of Traditional Chinese Medicine, Union Red Cross Hospital, Wuhan 430015, China
| | - Minfeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City 430022, Hubei Province, China
| | - Qifeng Lin
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengqi Zhang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuju Cai
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China..
| | - Shenglan Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Deng CG, Tang MY, Pan X, Liu ZH. Metastatic colon cancer treated using traditional Chinese medicine combined with chemotherapy: A case report. World J Clin Cases 2023; 11:4670-4676. [PMID: 37469725 PMCID: PMC10353496 DOI: 10.12998/wjcc.v11.i19.4670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Colon cancer (CC) is one of the leading causes of cancer-related morbidity and mortality worldwide. Traditional Chinese medicine (TCM) is widely used in the treatment of various chronic diseases. CC easily metastasizes and results in high morbidity and mortality rates.
CASE SUMMARY A 71-year-old man with a 12-year history of old myocardial infarction and a 7-year history of type 2 diabetes mellitus was diagnosed with CC and underwent right hemicolectomy 1 year ago. Tumor biopsy revealed moderately poorly differentiated adenocarcinoma. Subsequently, chemotherapy with oxaliplatin and paclitaxel was administered. Anastomosis recurrence and pelvic metastasis were noted 37 d later. The patient received eight 21-d cycles of adjuvant chemotherapy with oxaliplatin and capecitabine after recurrence. However, the tumor persisted, and chemotherapy-related liver damage developed gradually. Thus, he was advised to take TCM for the recurrence and pelvic metastasis. The patient’s metastatic CC was cured after receiving TCM combined with long-term chemotherapy.
CONCLUSION TCM may be an effective adjunct therapy in the treatment of patients with metastatic CC.
Collapse
Affiliation(s)
- Chen-Geng Deng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Meng-Yuan Tang
- Department of Breast and Thyroid Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xue Pan
- Post-Doctoral Mobile Station,Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhao-Heng Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China
| |
Collapse
|
6
|
Yang H, Yue GGL, Yuen KK, Gao S, Leung PC, Wong CK, Lau CBS. Mechanistic insights into the anti-tumor and anti-metastatic effects of Patrinia villosa aqueous extract in colon cancer via modulation of TGF-β R1-smad2/3-E-cadherin and FAK-RhoA-cofilin pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154900. [PMID: 37269754 DOI: 10.1016/j.phymed.2023.154900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Patrinia villosa, a traditional medicinal herb commonly used for treating intestinal-related diseases, has been commonly prescribed by Chinese medicine practitioners as a key component herb to treat colon cancer, although its anti-tumor effect and mechanisms of action have not been fully elucidated. HYPOTHESIS/PURPOSE This study aimed to investigate the anti-tumor and anti-metastatic effects of Patrinia villosa aqueous extract (PVW), and its underlying mechanisms. METHOD The chemical profile of PVW was analysed by high-performance liquid chromatography with photodiode-array detection (HPLC-DAD) method. Cell-based functional assays MTT, BrdU, scratch, and transwell were conducted to evaluate the effects of PVW on human colon cancer HCT116 and murine colon26-luc cells, assessing cytotoxicity, cell proliferation, motility, and migration, respectively. Western blotting was performed to assess the effect of PVW on the expression of key intracellular signaling proteins. In vivo studies were conducted using zebrafish embryos and tumor-bearing mice to evaluate the anti-tumor, anti-angiogenesis, and anti-metastatic effects of PVW in colon cancer. RESULTS Five chemical markers were identified and quantified in PVW. PVW exhibited significant cytotoxicity and anti-proliferative activity, as well as inhibitory effects on cell motility and migration in both HCT116 and colon 26-luc cancer cells via modulating protein expressions of TGF-β R1, smad2/3, snail, E-cadherin, FAK, RhoA, and cofilin. PVW (0.01-0.1 mg/ml) could significantly decrease the length of subintestinal vessels of zebrafish embryos through decreasing mRNA expressions of FLT1, FLT4, KDRL, VEGFaa, VEGFc, and Tie1. PVW (> 0.05 mg/ml) also significantly suppressed colon cancer cells migration in the zebrafish embryos. Furthermore, oral administration of PVW (1.6 g/kg) significantly inhibited tumor growth by decreasing the expressions of tumor activation marker Ki-67 and CD 31 in tumor tissues of HCT116 tumor-bearing mice. PVW could also significantly inhibit lung metastasis in colon 26-luc tumor-bearing mice by modulating their tumor microenvironment, including immune cells populations (T cells and MDSCs), levels of cytokines (IL-2, IL-12, and IFN-γ), as well as increasing the relative abundance of gut microbiota. CONCLUSION This study revealed for the first time the anti-tumor and anti-metastatic effects of PVW through regulation of TGF-β-smad2/3-E-cadherin, and FAK-cofilin pathways in colon cancer. These findings provide scientific evidence to support the clinical use of P. villosa in patients with colon cancer.
Collapse
Affiliation(s)
- Huihai Yang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ka-Ki Yuen
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Si Gao
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
7
|
Sharma B, Yadav DK. Metabolomics and Network Pharmacology in the Exploration of the Multi-Targeted Therapeutic Approach of Traditional Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233243. [PMID: 36501282 PMCID: PMC9737206 DOI: 10.3390/plants11233243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 05/20/2023]
Abstract
Metabolomic is generally characterized as a comprehensive and the most copious analytical technique for the identification of targeted and untargeted metabolite diversity in a biological system. Recently, it has exponentially been used for phytochemical analysis and variability among plant metabolites, followed by chemometric analysis. Network pharmacology analysis is a computational technique used for the determination of multi-mechanistic and therapeutic evaluation of chemicals via interaction with the genomes involved in targeted or untargeted diseases. In considering the facts, the present review aims to explore the role of metabolomics and network pharmacology in the scientific validation of therapeutic claims as well as to evaluate the multi-targeted therapeutic approach of traditional Indian medicinal plants. The data was collected from different electronic scientific databases such as Google Scholar, Science Direct, ACS publication, PubMed, Springer, etc., using different keywords such as metabolomics, techniques used in metabolomics, chemometric analysis, a bioinformatic tool for drug discovery and development, network pharmacology, methodology and its role in biological evaluation of chemicals, etc. The screened articles were gathered and evaluated by different experts for their exclusion and inclusion in the final draft of the manuscript. The review findings suggest that metabolomics is one of the recent most precious and effective techniques for metabolite identification in the plant matrix. Various chemometric techniques are copiously used for metabolites discrimination analysis hence validating the unique characteristic of herbal medicines and their derived products concerning their authenticity. Network pharmacology remains the only option for the unique and effective analysis of hundreds of chemicals or metabolites via genomic interaction and thus validating the multi-mechanistic and therapeutic approach to explore the pharmacological aspects of herbal medicines for the management of the disease.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA
| | - Dinesh Kumar Yadav
- Department of Pharmacognosy, SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India
- Correspondence: ; Tel.: +91-7042348251
| |
Collapse
|
8
|
Li J, Zhou F, Shang L, Liu N, Liu Y, Zhang M, Wang S, Yang S. Integrated network pharmacology and experimental verification to investigate the mechanisms of YYFZBJS against colorectal cancer via CDK1/PI3K/Akt signaling. Front Oncol 2022; 12:961653. [PMID: 36457504 PMCID: PMC9706206 DOI: 10.3389/fonc.2022.961653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/25/2022] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common digestive tract malignancy with rising incidence and morbidity worldwide during recent years. Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS), a traditional Chinese medicine formula, has showed positive effects against cancers. However, the mechanisms underlying its anticancer effects requires investigation. METHODS Information on bioactive compounds, potential YYFZBJS targets, and CRC-associated genes, was obtained from public databases. The key targets and ingredients as well their corresponding signaling pathways were identified using bioinformatic approaches, including Kyoto encyclopedia of genes and genomes (KEGG) analyses, gene ontology (GO), and protein-protein interaction (PPI). Subsequently, molecular docking was used to verify the main compounds-targets. Potential YYFZBJS therapeutic effects against CRC were validated in vitro and in vivo. RESULTS Using pharmacological network analysis, 40 YYFZBJS active compounds and 21 potential anti-CRC targets were identified. YYFZBJS was an important regulator of CRC through various targets and signaling pathways, particularly the cell cycle and PI3K/AKT pathway. Additionally, YYFZBJS suppressed the proliferation of CRC cells. Flow cytometry showed that YYFZBJS induced apoptosis and cell cycle arrest in the G2/M phase. Western blotting analysis indicated that YYFZBJS reduced the protein levels of CDK1, p-AKT, and p-PI3K, without altering total PI3K and AKT protein levels. In vivo analysis found that YYFZBJS inhibited tumor growth and PI3K/AKT signaling in a mouse model of CRC. CONCLUSION As predicted by network pharmacology and validated by the experimental results, YYFZBJS inhibited proliferation, induced apoptosis and arrested cell cycle progression in CRC by modulating the CDK1/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangyuan Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luorui Shang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Liu
- Rehabilitation Department of traditional Chinese Medicine, Union Red Cross Hospital, Wuhan, China
| | - Yuhan Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengqi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhan Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenglan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
10
|
Zhang YG, Liu XX, Zong JC, Zhang YTJ, Dong R, Wang N, Ma ZH, Li L, Wang SL, Mu YL, Wang SS, Liu ZM, Han LW. Investigation Driven by Network Pharmacology on Potential Components and Mechanism of DGS, a Natural Vasoprotective Combination, for the Phytotherapy of Coronary Artery Disease. Molecules 2022; 27:molecules27134075. [PMID: 35807320 PMCID: PMC9268537 DOI: 10.3390/molecules27134075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Phytotherapy offers obvious advantages in the intervention of Coronary Artery Disease (CAD), but it is difficult to clarify the working mechanisms of the medicinal materials it uses. DGS is a natural vasoprotective combination that was screened out in our previous research, yet its potential components and mechanisms are unknown. Therefore, in this study, HPLC-MS and network pharmacology were employed to identify the active components and key signaling pathways of DGS. Transgenic zebrafish and HUVECs cell assays were used to evaluate the effectiveness of DGS. A total of 37 potentially active compounds were identified that interacted with 112 potential targets of CAD. Furthermore, PI3K-Akt, MAPK, relaxin, VEGF, and other signal pathways were determined to be the most promising DGS-mediated pathways. NO kit, ELISA, and Western blot results showed that DGS significantly promoted NO and VEGFA secretion via the upregulation of VEGFR2 expression and the phosphorylation of Akt, Erk1/2, and eNOS to cause angiogenesis and vasodilation. The result of dynamics molecular docking indicated that Salvianolic acid C may be a key active component of DGS in the treatment of CAD. In conclusion, this study has shed light on the network molecular mechanism of DGS for the intervention of CAD using a network pharmacology-driven strategy for the first time to aid in the intervention of CAD.
Collapse
Affiliation(s)
- You-Gang Zhang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Xia-Xia Liu
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030000, China
| | - Jian-Cheng Zong
- Chenland Research Institute, Irvine, CA 92697, USA; (J.-C.Z.); (L.L.); (S.-L.W.)
| | - Yang-Teng-Jiao Zhang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Rong Dong
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Na Wang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030000, China
| | - Zhi-Hui Ma
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Li Li
- Chenland Research Institute, Irvine, CA 92697, USA; (J.-C.Z.); (L.L.); (S.-L.W.)
| | - Shang-Long Wang
- Chenland Research Institute, Irvine, CA 92697, USA; (J.-C.Z.); (L.L.); (S.-L.W.)
| | - Yan-Ling Mu
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Song-Song Wang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Zi-Min Liu
- Chenland Nutritionals Inc., Irvine, CA 92697, USA
- Correspondence: (Z.-M.L.); (L.-W.H.)
| | - Li-Wen Han
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
- Correspondence: (Z.-M.L.); (L.-W.H.)
| |
Collapse
|