1
|
Srivastava A, Abedrabbo S, Hassan J, Homouz D. Dynamics of confined water inside carbon nanotubes based on studying tetrahedral order parameters. Sci Rep 2024; 14:15480. [PMID: 38969700 PMCID: PMC11226439 DOI: 10.1038/s41598-024-66317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Water dynamics inside hydrophobic confinement, such as carbon nanotubes (CNTs), has garnered significant attention, focusing on water diffusion. However, a crucial aspect remains unexplored - the influence of confinement size on water ordering and intrinsic hydrogen bond dynamics. To address this gap, we conducted extensive molecular dynamics simulations to investigate local ordering and intrinsic hydrogen bond dynamics of water molecules within CNTs of various sizes (length:20 nm, diameters: 1.0 nm to 5.0 nm) over a wide range of temperatures (260K, 280K, 300K, and 320K). A striking observation emerged: in smaller CNTs, water molecules adopt an icy structure near tube walls while maintaining liquid state towards the center. Notably, water behavior within a 2.0 nm CNT stands out as an anomaly, distinct from other CNT sizes considered in this study. This anomaly was explained through the formation of water layers inside CNTs. The hydrogen bond correlation function of water within CNTs decayed more slowly than bulk water, with an increasing rate as CNT diameter increased. In smaller CNTs, water molecules hold onto their hydrogen bond longer than larger ones. Interestingly, in larger CNTs, the innermost layer's hydrogen bond lasts a shorter time compared to the other layers, and this changes with temperature.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Sufian Abedrabbo
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jamal Hassan
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates.
- Department of Physics, University of Houston, Houston, 77030-5005, TX, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, 77030-1402, TX, USA.
| |
Collapse
|
2
|
Chang Y, Zhang Y, Niu Z, Chen X, Du M, Yang Z. A Heterogeneous Viscosity Flow Model for Liquid Transport through Nanopores Considering Pore Size and Wettability. Molecules 2024; 29:3176. [PMID: 38999127 PMCID: PMC11243303 DOI: 10.3390/molecules29133176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
The confinement effect in micro- and nanopores gives rise to distinct flow characteristics in fluids. Clarifying the fluid migration pattern in confined space is crucial for understanding and explaining the abnormal flow phenomena in unconventional reservoirs. In this study, flow characteristics of water and oil in alumina nanochannels were investigated with diameters ranging from 21 nm to 120 nm, and a heterogeneous viscosity flow model considering boundary fluid was proposed. Compared with the prediction of the HP equation, both types of fluids exhibit significant flow suppression in nanochannels. As the channel size decreases, the deviation degree increases. The fluid viscosity of the boundary region displays an upward trend as the channel size decreases and the influence of the interaction between the liquid and solid walls intensifies. The thickness of the boundary region gradually decreases with increasing pressure and eventually reaches a stable value, which is primarily determined by the strength of the interaction between the liquid and solid surfaces. Both the pore size and wettability are essential factors that affect the fluid flow. When the space scale is extremely small, the impact of wettability becomes more pronounced. Finally, the application of the heterogeneous flow model for permeability evaluation has yielded favorable fitting results. The model is of great significance for studying the fluid flow behavior in unconventional reservoirs.
Collapse
Affiliation(s)
- Yilin Chang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China
- Sinopec North China Petroleum Bureau, Zhengzhou 450006, China
| | - Yapu Zhang
- Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing 100083, China
| | - Zhongkun Niu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing 100083, China
| | - Xinliang Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing 100083, China
| | - Meng Du
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing 100083, China
| | - Zhengming Yang
- Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing 100083, China
| |
Collapse
|
3
|
Li Q, Zhu G, Liu Z, Xu J. Molecular dynamics simulation studies on the ionic liquid N-butylpyridinium tetrafluoroborate on the gold surface. Heliyon 2024; 10:e32710. [PMID: 38975103 PMCID: PMC11225740 DOI: 10.1016/j.heliyon.2024.e32710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The study of solid/liquid interface is of great significance for understanding various phenomena such as the nanostructure of the interface, liquid wetting, crystal growth and nucleation. In this work, the nanostructure of the pyridinium ionic liquid [BPy]BF4 on different gold surfaces was studied by molecular dynamics simulation. The results indicate that the density of the ionic liquids near the gold surface is significantly higher than that in the bulk phase. Cation's tail (the alkyl chain) orients parallel to the surface under all studied conditions. Cation's head (the pyridine ring) orientation varies from parallel to perpendicular, which depends on the temperature and corrugation of the Au(hkl) surface. Interestingly, analysis of simulated mass and number densities revealed that surface corrugation randomizes the cations packing. On smooth Au(111) and Au(100) surfaces, parallel and perpendicular orientations are well distinguished for densely packed cations. While on corrugated Au(110), cations' packing density and order are decreased. Overall, this study explores the adsorption effect of the gold surface on ionic liquids, providing some valuable insights into their behavior on the solid/liquid interface.
Collapse
Affiliation(s)
- Qiang Li
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
- Faculty of Engineering, Anhui Sanlian University, Hefei, 230601, China
| | - Guanglai Zhu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Zhicong Liu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Jianqiang Xu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
4
|
Srivastava A, Hassan J, Homouz D. Hydrogen Bond Dynamics and Phase Transitions of Water inside Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:284. [PMID: 36678038 PMCID: PMC9866512 DOI: 10.3390/nano13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Water dynamics in nanochannels are altered by confinement, particularly in small carbon nanotubes (CNTs). However, the mechanisms behind these effects remain unclear. To address these issues, we carried out extensive molecular dynamics (MD) simulations to investigate the structure and dynamics of water inside CNTs of different sizes (length of 20 nm and diameters vary from 0.8 nm to 5.0 nm) at different temperatures (from 200 K to 420 K). The radial density profile of water inside CNTs shows a single peak near the CNT walls for small nanotubes. For CNTs with larger sizes, water molecules are arranged into coaxial tubular sheets, the number of which increases with the CNT size. Subdiffusive behavior is observed for ultranarrow CNTs with diameters of 0.8 nm and 1 nm. As the size of CNTs increases, Fickian diffusion becomes evident. The hydrogen bond correlation function of water inside CNT decays slower than in bulk water, and the decay rate decreases as we increase the diameter of the CNTs. In large CNTs, the hydrogen bond lifetime of the innermost layer is shorter than the other layers and depends on temperature. Additional analysis of our results reveals that water molecules along the CNT axis show a non-Arrhenius to Arrhenius diffusion crossover. In general, the diffusion transition temperature is higher than that of bulk water, but it depends on the size of the CNT.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Jamal Hassan
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Physics, University of Houston, Houston, TX 77030-5005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030-1402, USA
| |
Collapse
|
5
|
Liu D, Li J, Wu J, Lu D. Ab Initio Molecular Dynamics Simulation of Water Transport through Short Carbon Nanotubes. ACS OMEGA 2022; 7:40466-40479. [PMID: 36385899 PMCID: PMC9647839 DOI: 10.1021/acsomega.2c05588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Water transport through short single-walled (6, 6) carbon nanotubes (CNTs) was investigated with ab initio molecular dynamics (AIMD) simulation at different temperatures. The water molecules under extreme confinement present a one-dimensional jagged pattern owing to hydrogen bonding, with the near-perfect alignment of the dipole orientations. CNTs ending with dangling bonds can promote water dissociation near the entrance and the occurrence of dipole flipping along the water wire at high temperatures, accompanied by the formation of D defects and L defects in the hydrogen-bond network. In contrast, dissociation of water molecules rarely takes place if the dangling bonds at the ends of the CNTs are terminated with H atoms. Angular jumps of water molecules are commonplace inside the narrow CNTs, implying a low-energy barrier for hydrogen-bond exchange among water molecules in narrow CNTs. The simulation results demonstrate the high activity of dangling bonds at the ends of short CNTs, accompanying passivation processes and their profound impact on water structure and transport, which is important for diverse technological applications.
Collapse
Affiliation(s)
- Dongfei Liu
- Department
of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Jipeng Li
- School
of Materials Science and Engineering, Hainan
University, Haikou570228, P. R. China
| | - Jianzhong Wu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California92521, United States
| | - Diannan Lu
- Department
of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| |
Collapse
|
6
|
Chatzichristos A, Hassan J. Current Understanding of Water Properties inside Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:174. [PMID: 35010123 PMCID: PMC8746445 DOI: 10.3390/nano12010174] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022]
Abstract
Confined water inside carbon nanotubes (CNTs) has attracted a lot of attention in recent years, amassing as a result a very large number of dedicated studies, both theoretical and experimental. This exceptional scientific interest can be understood in terms of the exotic properties of nanoconfined water, as well as the vast array of possible applications of CNTs in a wide range of fields stretching from geology to medicine and biology. This review presents an overreaching narrative of the properties of water in CNTs, based mostly on results from systematic nuclear magnetic resonance (NMR) and molecular dynamics (MD) studies, which together allow the untangling and explanation of many seemingly contradictory results present in the literature. Further, we identify still-debatable issues and open problems, as well as avenues for future studies, both theoretical and experimental.
Collapse
Affiliation(s)
- Aris Chatzichristos
- Department of Physics, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jamal Hassan
- Department of Physics, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|