1
|
Mohamed RS, Fouda K, Maghraby AS, Assem FM, Menshawy MM, Zaghloul AH, Abdel-Salam AM. Hepato-renal protective impact of nanocapsulated Petroselinum crispum and Anethum graveolens essential oils added in fermented milk against some food additives via antioxidant and anti-inflammatory effects: In silico and in vivo studies. Heliyon 2024; 10:e36866. [PMID: 39286161 PMCID: PMC11403541 DOI: 10.1016/j.heliyon.2024.e36866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
The study assessed the efficacy of parsley and dill essential oils (EOs) nanocapsules incorporated into fermented milk in hepato-renal protection against specific food additives. A molecular docking assay was conducted between parsley and dill EOs bioactive molecules and inflammatory cytokines. Freeze-dried parsley and dill EOs nanocapsules were developed, characterized for their morphological structure, particle size, zeta potential, polydispersity index and encapsulation efficiency and assessed in fast green dye and sodium benzoate (SB) combination-treated rats. The docking results revealed that the primary constituents of parsley and dill EOs (apiol, myristicin, α-pinene, (-)-carvone, and d-limonene) interacted with the active sites of TNF-α, IL-1β and TGF-1β cytokines with hydrophobic and hydrogen bond interactions. D-limonene had the highest binding affinity (6.4 kcal/mol) for the TNF-α. Apiol and myristicin had the highest binding affinity (5.1, 5.0, 5.0 and 5.0 kcal/mol, respectively) for the IL-1β and TGF-β1 receptors. Biochemically and histopathologically, the excessive co-administration of fast green and SB revealed adverse effects on the liver and the kidney. Whereas the treatment with parsley and dill EOs nanocapsules afford hepato-renal protective effects as manifested by suppression the elevated liver and kidney functions. Parsley and dill EOs nanocapsules showed a significant reduction of the liver (64.08 and 80.5 pg/g, respectively) and kidney (59.3 and 83.6 pg/g, respectively) ROS. Moreover, parsley and dill EOs nanocapsules down-regulated the liver and the kidney inflammatory cytokines (IL-6, TNF-α, IL-1β and TGF-1β) and lipid peroxidation and up-regulated the antioxidant enzymes. In conclusion, the data suggest a potential hepato-renal protective effects of parsley and dill EOs nanocapsules.
Collapse
Affiliation(s)
- Rasha S Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Karem Fouda
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Amany S Maghraby
- Department of Therapeutic Chemistry, research group immune-and bio-markers for infection, the Center of Excellent for Advanced Science (CEAS), National Research Centre, Dokki, Cairo, Egypt
| | - Fayza M Assem
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | - Medhat M Menshawy
- College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th October City, Egypt
| | - Ahmed H Zaghloul
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
2
|
Yin J, Li Y, Zhong W, Li K, Xu J, Zeng X, Chen H, Pang J, Wu C. Effect of konjac glucomannan-based preservation pads on quality changes in refrigerated large yellow croaker (Pseudosciaena crocea). Int J Biol Macromol 2024; 276:133752. [PMID: 38986984 DOI: 10.1016/j.ijbiomac.2024.133752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The purpose of this study was to evaluate the preservation effects of konjac glucomannan (KGM)/oregano essential oil (OEO) Pickering emulsion-based pads (K/OPE pads) on large yellow croaker (Pseudosciaena crocea) fillets stored at 4 °C. The K/OPE pads were fabricated using a freeze-drying technique. The homogeneous distribution of the OEO Pickering emulsions in the KGM matrix was observed using scanning electron microscopy. Fourier transform infrared spectroscopy confirmed that the OEO emulsions were encapsulated in the KGM and there was hydrogen bonding interaction between them. Compared with the KGM pads, the K/OPE pad groups demonstrated enhanced antioxidant and antimicrobial properties. When the content of OPE was increased from 20 % to 40 %, the antioxidant performance of the K/OPE pads increased from 48.09 % ± 0.03 % to 86.65 % ± 0.02 % and the inhibition range of Escherichia coli and Staphylococcus aureus increased to 13.84 ± 0.81 and 16.87 ± 1.53 mm, respectively. At the same time, K/OPE pads were more effective in inhibiting the formation of total volatile alkaline nitrogen and the production of thiobarbituric acid-reactive substances, thereby helping in reducing water loss and maintaining the muscle tissue structure of fish fillets for a longer storage time. Consequently, these K/OPE40 pads extended the shelf life of the fish fillets by an additional 4 days and delayed spoilage during refrigerated storage. The findings suggest that the K/OPE pads can effectively safeguard the quality of refrigerated large yellow croaker fillets, presenting their potential as an active packaging material in the fish preservation industry.
Collapse
Affiliation(s)
- Jing Yin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yaoling Li
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Weiquan Zhong
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kehao Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingting Xu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xingxing Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongbin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China.
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
3
|
Mazurkeviciute A, Matulyte I, Ivaskiene M, Zilius M. Modeling, the Optimization of the Composition of Emulgels with Ciclopirox Olamine, and Quality Assessment. Polymers (Basel) 2024; 16:1816. [PMID: 39000671 PMCID: PMC11244097 DOI: 10.3390/polym16131816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The design and development of pharmaceutical products require specific knowledge, time, and investment. Response surface methodology (RSM) is a widely used technique in the design of experiments (DoE) to optimize various processes and products. The aim of this study was to model and produce experimental emulgels containing 1% ciclopirox olamine and to evaluate their physical, rheological, and mechanical properties and their ability to release ciclopirox olamine. The objective was to optimize the composition of the experimental emulgel containing 1% ciclopirox olamine by applying a central composite design based on selected criteria. The surfactant (polysorbate 80) had the greatest influence on the physical, rheological, and mechanical properties of the emulgels, as well as on the release of ciclopirox olamine from these systems. During the optimization process, an emulgel of optimal composition was generated containing 38.27% mineral oil, 6.56% polysorbate 80, and 55.17% hydrogel containing 1% ciclopirox olamine, meeting specified criteria (dependent variables) including the maximum flux of ciclopirox olamine, the minimum sol-gel transition temperature (Tsol/gel), and the minimum particle size of the oil phase. The oil phase particle size (D50) of this emulgel was determined to be 0.337 µm, the system Tsol/gel was 9.1 °C, and the flux of ciclopirox olamine from this gel matrix was calculated to be 1.44 mg/cm2. This emulgel of optimal composition could be used to treat fungal skin diseases.
Collapse
Affiliation(s)
- Agne Mazurkeviciute
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (A.M.); (I.M.)
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania
| | - Inga Matulyte
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (A.M.); (I.M.)
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania
| | - Marija Ivaskiene
- Dr. L. Kraučeliūnas Small Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania;
| | - Modestas Zilius
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (A.M.); (I.M.)
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania
| |
Collapse
|
4
|
Łętocha A, Miastkowska M, Sikora E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers (Basel) 2022; 14:polym14183834. [PMID: 36145992 PMCID: PMC9502979 DOI: 10.3390/polym14183834] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alginates are the most widely used natural polymers in the pharmaceutical, food and cosmetic industries. Usually, they are applied as a thickening, gel-forming and stabilizing agent. Moreover, the alginate-based formulations such as matrices, membranes, nanospheres or microcapsules are often used as delivery systems. Alginate microparticles (AMP) are biocompatible, biodegradable and nontoxic carriers, applied to encapsulate hydrophilic active substances, including probiotics. Here, we report the methods most frequently used for AMP production and encapsulation of different actives. The technological parameters important in the process of AMP preparation, such as alginate concentration, the type and concentration of other reagents (cross-linking agents, oils, emulsifiers and pH regulators), agitation speed or cross-linking time, are reviewed. Furthermore, the advantages and disadvantages of alginate microparticles as delivery systems are discussed, and an overview of the active ingredients enclosed in the alginate carriers are presented.
Collapse
|
5
|
Rational Design of Self-Emulsifying Pellet Formulation of Thymol: Technology Development Guided by Molecular-Level Structure Characterization and Ex Vivo Testing. Pharmaceutics 2022; 14:pharmaceutics14081545. [PMID: 35893801 PMCID: PMC9394426 DOI: 10.3390/pharmaceutics14081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
The growing need for processing natural lipophilic and often volatile substances such as thymol, a promising candidate for topical treatment of intestinal mucosa, led us to the utilization of solid-state nuclear magnetic resonance (ss-NMR) spectroscopy for the rational design of enteric pellets with a thymol self-emulsifying system (SES). The SES (triacylglycerol, Labrasol®, and propylene glycol) provided a stable o/w emulsion with particle size between 1 and 7 µm. The ex vivo experiment confirmed the SES mucosal permeation and thymol delivery to enterocytes. Pellets W90 (MCC, Neusilin®US2, chitosan) were prepared using distilled water (90 g) by the M1−M3 extrusion/spheronisation methods varying in steps number and/or cumulative time. The pellets (705−740 µm) showed mostly comparable properties—zero friability, low intraparticular porosity (0−0.71%), and relatively high density (1.43−1.45%). They exhibited similar thymol release for 6 h (burst effect in 15th min ca. 60%), but its content increased (30−39.6 mg/g) with a shorter process time. The M3-W90 fluid-bed coated pellets (Eudragit®L) prevented undesirable thymol release in stomach conditions (<10% for 3 h). A detailed, ss-NMR investigation revealed structural differences across samples prepared by M1−M3 methods concerning system stability and internal interactions. The suggested formulation and methodology are promising for other lipophilic volatiles in treating intestinal diseases.
Collapse
|