1
|
Sadi M, Carvalho N, Léger C, Vitorge B, Ladant D, Guijarro JI, Chenal A. B2LiVe, a label-free 1D-NMR method to quantify the binding of amphitropic peptides or proteins to membrane vesicles. CELL REPORTS METHODS 2023; 3:100624. [PMID: 37909050 PMCID: PMC10694493 DOI: 10.1016/j.crmeth.2023.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/03/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Amphitropic proteins and peptides reversibly partition from solution to membrane, a key process that regulates their functions. Experimental approaches classically used to measure protein partitioning into lipid bilayers, such as fluorescence and circular dichroism, are hardly usable when the peptides or proteins do not exhibit significant polarity and/or conformational changes upon membrane binding. Here, we describe binding to lipid vesicles (B2LiVe), a simple, robust, and widely applicable nuclear magnetic resonance (NMR) method to determine the solution-to-membrane partitioning of unlabeled proteins or peptides. B2LiVe relies on previously described proton 1D-NMR fast-pulsing techniques. Membrane partitioning induces a large line broadening, leading to a loss of protein signals; therefore, the decrease of the NMR signal directly measures the fraction of membrane-bound protein. The method uses low polypeptide concentrations and has been validated on several membrane-interacting polypeptides, ranging from 3 to 54 kDa, with membrane vesicles of different sizes and various lipid compositions.
Collapse
Affiliation(s)
- Mirko Sadi
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France; Université de Paris Cité, 75005 Paris, France
| | - Nicolas Carvalho
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France; Université de Paris Cité, 75005 Paris, France
| | - Corentin Léger
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - Bruno Vitorge
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Daniel Ladant
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - J Iñaki Guijarro
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France.
| | - Alexandre Chenal
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France.
| |
Collapse
|
2
|
Tahk MJ, Laasfeld T, Meriste E, Brea J, Loza MI, Majellaro M, Contino M, Sotelo E, Rinken A. Fluorescence based HTS-compatible ligand binding assays for dopamine D3 receptors in baculovirus preparations and live cells. Front Mol Biosci 2023; 10:1119157. [PMID: 37006609 PMCID: PMC10062709 DOI: 10.3389/fmolb.2023.1119157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Dopamine receptors are G-protein-coupled receptors that are connected to severe neurological disorders. The development of new ligands targeting these receptors enables gaining a deeper insight into the receptor functioning, including binding mechanisms, kinetics and oligomerization. Novel fluorescent probes allow the development of more efficient, cheaper, reliable and scalable high-throughput screening systems, which speeds up the drug development process. In this study, we used a novel Cy3B labelled commercially available fluorescent ligand CELT-419 for developing dopamine D3 receptor-ligand binding assays with fluorescence polarization and quantitative live cell epifluorescence microscopy. The fluorescence anisotropy assay using 384-well plates achieved Z’ value of 0.71, which is suitable for high-throughput screening of ligand binding. The assay can also be used to determine the kinetics of both the fluorescent ligand as well as some reference unlabeled ligands. Furthermore, CELT-419 was also used with live HEK293-D3R cells in epifluorescence microscopy imaging for deep-learning-based ligand binding quantification. This makes CELT-419 quite a universal fluorescence probe which has the potential to be also used in more advanced microscopy techniques resulting in more comparable studies.
Collapse
Affiliation(s)
| | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, Tartu, Estonia
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Elo Meriste
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Jose Brea
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
| | - Maria Isabel Loza
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago, Spain
- Celtarys Research S.L., Santiago, Spain
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago, Spain
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
- *Correspondence: Ago Rinken,
| |
Collapse
|
3
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Kramer K, Sari M, Schulze K, Flegel H, Stehr M, Mey I, Janshoff A, Steinem C. From LUVs to GUVs─How to Cover Micrometer-Sized Pores with Membranes. J Phys Chem B 2022; 126:8233-8244. [PMID: 36210780 DOI: 10.1021/acs.jpcb.2c05685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pore-spanning membranes (PSMs) are a versatile tool to investigate membrane-confined processes in a bottom-up approach. Pore sizes in the micrometer range are most suited to visualize PSMs using fluorescence microscopy. However, the preparation of these PSMs relies on the spreading of giant unilamellar vesicles (GUVs). GUV production faces several limitations. Thus, alternative ways to generate PSMs starting from large or small unilamellar vesicles that are more reproducibly prepared are highly desirable. Here we describe a method to produce PSMs obtained from large unilamellar vesicles, making use of droplet-stabilized GUVs generated in a microfluidic device. We analyzed the lipid diffusion in the free-standing and supported parts of the PSMs using z-scan fluorescence correlation spectroscopy and fluorescence recovery after photobleaching experiments in combination with finite element simulations. Employing atomic force indentation experiments, we also investigated the mechanical properties of the PSMs. Both lipid diffusion constants and lateral membrane tension were compared to those obtained on PSMs derived from electroformed GUVs, which are known to be solvent- and detergent-free, under otherwise identical conditions. Our results demonstrate that the lipid diffusion, as well as the mechanical properties of the resulting PSMs, is almost unaffected by the GUV formation procedure but depends on the chosen substrate functionalization. With the new method in hand, we were able to reconstitute the syntaxin-1A transmembrane domain in microfluidic GUVs and PSMs, which was visualized by fluorescence microscopy.
Collapse
Affiliation(s)
- Kristina Kramer
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany
| | - Merve Sari
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany
| | - Kathrin Schulze
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany
| | - Hendrik Flegel
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany
| | - Miriam Stehr
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany.,Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077Göttingen, Germany
| |
Collapse
|
5
|
Li Q, Yin G, Wang J, Li L, Liang Q, Zhao X, Chen Y, Zheng X, Zhao X. An emerging paradigm to develop analytical methods based on immobilized transmembrane proteins and its applications in drug discovery. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|