Dwivedi AR, Jaiswal S, Kukkar D, Kumar R, Singh TG, Singh MP, Gaidhane AM, Lakhanpal S, Prasad KN, Kumar B. A decade of pyridine-containing heterocycles in US FDA approved drugs: a medicinal chemistry-based analysis.
RSC Med Chem 2024:d4md00632a. [PMID:
39493227 PMCID:
PMC11528346 DOI:
10.1039/d4md00632a]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Heterocyclic scaffolds, particularly, pyridine-containing azaheterocycles, constitute a major part of the drugs approved in the past decade. In the present review, we explored the pyridine ring part of US FDA-approved small molecules (2014-2023). The analysis of the approved drugs bearing a pyridine ring revealed that a total of 54 drugs were approved. Among them, the significant number comprised the anticancer category (18 drugs, 33%), followed by drugs affecting the CNS system (11 drugs, 20%), which include drugs to treat migraines, Parkinsonism disorders, chemotherapeutic-induced nausea, insomnia, and ADHD or as CNS-acting analgesics or sedatives. Next, six drugs (11%) were also approved to treat rare conditions, followed by five drugs that affect the hematopoietic system. The analysis also revealed that drug approval was granted for antibiotics, antivirals, and antifungals, including drugs for the treatment of tropical and sub-tropical diseases. Primary drug targets explored were kinases, and the major metabolizing enzyme was CYP3A4. Further analysis of formulation types revealed that 50% of the approved drugs were tablets, followed by 17% capsules and 15% injections. Elemental analysis showed that most approved drugs contained sulfur, while fluorine was noted in 32 compounds. Therefore, the present review is a concerted effort to cover drugs bearing pyridine rings approved in the last decade and provide thorough discussion and commentary on their pharmacokinetics and pharmacodynamics aspects. Furthermore, in-depth structural and elemental analyses were explored, thus providing comprehensive guidance for medicinal chemists and scientists working in allied science domains.
Collapse