1
|
Simei JLQ, Souza JDR, Lisboa JR, Campos AC, Guimarães FS, Zuardi A, Crippa JAS. Does the "Entourage Effect" in Cannabinoids Exist? A Narrative Scoping Review. Cannabis Cannabinoid Res 2024; 9:1202-1216. [PMID: 37535820 DOI: 10.1089/can.2023.0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Background: The concept of an "entourage" effect in the cannabis and cannabinoids' field was first introduced in the late 1990s, during a period when most research on medical cannabinoids focused on the effects of isolated cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabinol. Over the past decade, however, with the increased understanding of the endocannabinoid system, the discovery of other phytocannabinoids and their potential therapeutic uses, the term has gained widespread use in scientific reviews and marketing campaigns. Objective: Critically review the application of the term "entourage effect (EE)" in the literature and its endorsement by certain sectors of the cannabis market. Also, explore the perspectives for further interpretation and elaboration of the term based on current evidence, aiming to contribute to a more nuanced understanding of the concept and its implications for cannabinoid-based medicine. Methods: A comprehensive review of the literature was conducted to evaluate the current state of knowledge regarding the entourage effect. Relevant studies and scientific reviews were analyzed to assess the evidence of clinical efficacy and safety, as well as the regulation of cannabinoid-containing product production. Results: The EE is now recognized as a synergistic phenomenon in which multiple components of cannabis interact to modulate the therapeutic actions of the plant. However, the literature provides limited evidence to support it as a stable and predictable phenomenon. Hence, there is also limited evidence to support clinical efficacy, safety, and appropriate regulation for cannabinoid-containing products based on a "entourage" hypothesis. Conclusion: The EE has significant implications for the medical use of cannabinoid-containing products and their prescription. Nevertheless, a critical evaluation of the term's application is necessary. Further research and evidence are needed to establish the clinical efficacy, safety, and regulatory framework for these products. It's crucial that regulators, the pharmaceutical industry, the media, and health care providers exercise caution and avoid prematurely promoting the entourage effect hypothesis as a scientific proven phenomenon for cannabinoids and other cannabis-derived compound combinations.
Collapse
Affiliation(s)
- João Luís Q Simei
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Diogo R Souza
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Roberto Lisboa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alline C Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
| | - José Alexandre S Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Thalappil MA, Singh P, Carcereri de Prati A, Sahoo SK, Mariotto S, Butturini E. Essential oils and their nanoformulations for breast cancer therapy. Phytother Res 2024; 38:556-591. [PMID: 37919622 DOI: 10.1002/ptr.8054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Breast Cancer (BC) is the most prevalent type of cancer in the world. Current treatments include surgery, radiation, and chemotherapy but often are associated with high toxicity to normal tissues, chemoresistance, and relapse. Thus, developing novel therapies which could combat these limitations is essential for effective treatment. In this context, phytochemicals are increasingly getting popular due to their safety profile, ability to efficiently target tumors, and circumvent limitations of existing treatments. Essential Oils (EOs) are mixtures of various phytochemicals which have shown potential anticancer activity in preclinical BC models. However, their clinical translation is limited by factors such as high volatility, low stability, and poor solubility. Nanotechnology has facilitated their encapsulation in a variety of nanostructures and proven to overcome these limitations. In this review, we have efficiently summarized the current knowledge on the anticancer effect of EOs and constituents in both in in vitro and in in vivo BC models. Further, we also provide a descriptive account on the potential of nanotechnology in enhancing the anti-BC activity of EOs and their constituents. The papers discussed in this review were selected using the keywords "antiproliferative Essential Oils in breast cancer," "anticancer activity of Essential Oil in breast cancer," and "cytotoxicity of Essential Oils in breast cancer" performed in PubMed and ScienceDirect databases.
Collapse
Affiliation(s)
- Muhammed Ashiq Thalappil
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Priya Singh
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Di Giacomo S, Percaccio E, Vitalone A, Ingallina C, Mannina L, Macone A, Di Sotto A. Characterization of the Chemopreventive Properties of Cannabis sativa L. Inflorescences from Monoecious Cultivars Grown in Central Italy. PLANTS (BASEL, SWITZERLAND) 2023; 12:3814. [PMID: 38005711 PMCID: PMC10675481 DOI: 10.3390/plants12223814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Hemp bioproducts hold great promise as valuable materials for nutraceutical and pharmaceutical applications due to their diverse bioactive compounds and potential health benefits. In line with this interest and in an attempt to valorize the Lazio Region crops, this present study investigated chemically characterized hydroalcoholic and organic extracts, obtained from the inflorescences of locally cultivated Felina 32, USO 31, Ferimon and Fedora 17 hemp varieties. In order to highlight the possible chemopreventive power of the tested samples, a bioactivity screening was performed, which included studying the antimutagenic activity, radical scavenging power, cytotoxicity in human hepatoma HepG2 cells, leakage of lactate dehydrogenase (LDH) and modulation of the oxidative stress parameters and glucose-6-phosphate dehydrogenase (G6PDH) involved in the regulation of the cell transformation and cancer proliferation. Tolerability studies in noncancerous H69 cholangiocytes were performed, too. The organic extracts showed moderate to strong antimutagenic activities and a marked cytotoxicity in the HepG2 cells, associated with an increased oxidative stress and LDH release, and to a G6PDH modulation. The hydroalcoholic extracts mainly exhibited radical scavenging properties with weak or null activities in the other assays. The extracts were usually well-tolerated in H69 cells, except for the highest concentrations which impaired cell viability, likely due to an increased oxidative stress. The obtained results suggest a possibility in the inflorescences from the Felina 32, USO 31, Ferimon and Fedora 17 hemp varieties as source of bioactive compounds endowed with genoprotective and chemopreventive properties that could be harnessed as preventive or adjuvant healing strategies.
Collapse
Affiliation(s)
- Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
- Unit of Human Nutrition and Health, Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy
| | - Ester Percaccio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
| | - Annabella Vitalone
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
| | - Cinzia Ingallina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.I.); (L.M.)
| | - Luisa Mannina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.I.); (L.M.)
| | - Alberto Macone
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
| |
Collapse
|
4
|
Melfi F, Carradori S, Mencarelli N, Campestre C, Gallorini M, Di Giacomo S, Di Sotto A. Natural products as a source of new anticancer chemotypes. Expert Opin Ther Pat 2023; 33:721-744. [PMID: 37775999 DOI: 10.1080/13543776.2023.2265561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
INTRODUCTION Exploring the chemical diversity and molecular mechanisms of natural products continues to be an important research area for identifying novel promising therapeutic approaches for fighting cancer. This is a complex disease and poses important challenges, which require not only targeted interventions to improve chemotherapy efficacy and tolerability, but also adjuvant strategies to counteract chemoresistance development and relapses. AREAS COVERED After a brief description of the recent literature on the anticancer potential of natural compounds, we searched for patents following the PRISMA guidelines, filtering the results published from 2019 onwards. In addition, some relevant publications from the overall scientific literature were also discussed. EXPERT OPINION This review comprehensively covers and analyzes the most recent advances on the anticancer mechanism of licensed natural compounds and their chemical optimization. Patentability of natural compounds was discussed according to the recent legislation in the U.S.A. and Europe.
Collapse
Affiliation(s)
- Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Noemi Mencarelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marialucia Gallorini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Christensen C, Rose M, Cornett C, Allesø M. Decoding the Postulated Entourage Effect of Medicinal Cannabis: What It Is and What It Isn't. Biomedicines 2023; 11:2323. [PMID: 37626819 PMCID: PMC10452568 DOI: 10.3390/biomedicines11082323] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The 'entourage effect' term was originally coined in a pre-clinical study observing endogenous bio-inactive metabolites potentiating the activity of a bioactive endocannabinoid. As a hypothetical afterthought, this was proposed to hold general relevance to the usage of products based on Cannabis sativa L. The term was later juxtaposed to polypharmacy pertaining to full-spectrum medicinal Cannabis products exerting an overall higher effect than the single compounds. Since the emergence of the term, a discussion of its pharmacological foundation and relevance has been ongoing. Advocates suggest that the 'entourage effect' is the reason many patients experience an overall better effect from full-spectrum products. Critics state that the term is unfounded and used primarily for marketing purposes in the Cannabis industry. This scoping review aims to segregate the primary research claiming as well as disputing the existence of the 'entourage effect' from a pharmacological perspective. The literature on this topic is in its infancy. Existing pre-clinical and clinical studies are in general based on simplistic methodologies and show contradictory findings, with the clinical data mostly relying on anecdotal and real-world evidence. We propose that the 'entourage effect' is explained by traditional pharmacological terms pertaining to other plant-based medicinal products and polypharmacy in general (e.g., synergistic interactions and bioenhancement).
Collapse
Affiliation(s)
- Catalina Christensen
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Martin Rose
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Claus Cornett
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark;
| | - Morten Allesø
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| |
Collapse
|
6
|
Fraschetti C, Goci E, Nicolescu A, Cairone F, Carradori S, Filippi A, Palmieri V, Mocan A, Cesa S. Pomegranate Fruit Cracking during Maturation: From Waste to Valuable Fruits. Foods 2023; 12:foods12091908. [PMID: 37174445 PMCID: PMC10178262 DOI: 10.3390/foods12091908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The pomegranate is an emerging functional food which is nowadays becoming more and more commercially attractive. Each part of this fruit (peels, arils and seeds) has a specific phytocomplex, rich in anti-oxidant and anti-radical compounds. Among these, punicalagin and ellagic acid continue to be widely studied for their numerous beneficial effects on human health (anti-inflammatory effects, anti-diabetes activity, cardio-protection, cancer prevention). Despite their exceptionally valuable composition and high adaptability to different climatic conditions, pomegranate fruits are highly susceptible to splitting during different stages of ripening, so much so that an estimated 65% of the production may be lost. A "zero-kilometer" approach should therefore be adopted to utilize such a valuable product otherwise destined to be downgraded or even incinerated, with a very high environmental impact. The aim of this work is to highlight and compare the compositional differences between whole and split pomegranates belonging to the cultivar Dente di Cavallo, grown in Apulia (Italy), to assess a valuable role for this split fruit usually considered as waste. The arils and peels are subjected to extraction procedures and the extracts analyzed by CIEL*a*b*, HPLC-DAD and HS-SPME/GC-MS. Moreover, an assessment of the inhibitory activity against α-glucosidase, acetylcholinesterase and tyrosinase enzymes has also been applied. The data show a better chemical profile in split fruits (namely 60% more anthocyanin content than intact fruit) with very interesting results in terms of α-glucosidase inhibition. The juices obtained by squeezing are also compared to commercial juices ("Salus Melagrana" and "La Marianna") processed from the same cultivar and subjected to the same protocol analysis.
Collapse
Affiliation(s)
- Caterina Fraschetti
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Enkelejda Goci
- Pharmacotherapeutic Research Center, Faculty of Medical Sciences, Aldent University, 1001 Tirana, Albania
| | - Alexandru Nicolescu
- Laboratory of Chromatography, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business for Rural Development, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Francesco Cairone
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonello Filippi
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vincenzo Palmieri
- Fratelli Palmieri Via Emanuele Filiberto, 56, Casalnuovo Monterotaro, 71033 Foggia, Italy
| | - Andrei Mocan
- Laboratory of Chromatography, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business for Rural Development, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Stefania Cesa
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
7
|
Raz N, Eyal AM, Berneman Zeitouni D, Hen-Shoval D, Davidson EM, Danieli A, Tauber M, Ben-Chaim Y. SELECTED CANNABIS TERPENES SYNERGIZE WITH THC TO PRODUCE INCREASED CB1 RECEPTOR ACTIVATION. Biochem Pharmacol 2023; 212:115548. [PMID: 37084981 DOI: 10.1016/j.bcp.2023.115548] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
The cannabis plant exerts its pharmaceutical activity primarily by the binding of cannabinoids to two G protein-coupled cannabinoid receptors, CB1 and CB2. The role that cannabis terpenes play in this activation has been considered and debated repeatedly, based on only limited experimental results. In the current study we used a controlled in-vitro heterologous expression system to quantify the activation of CB1 receptors by sixteen cannabis terpenes individually, by tetrahydrocannabinol (THC) alone and by THC-terpenes mixtures. The results demonstrate that all terpenes, when tested individually, activate CB1 receptors, at about 10-50% of the activation by THC alone. The combination of some of these terpenes with THC significantly increases the activity of the CB1 receptor, compared to THC alone. In some cases, several fold. Importantly, this amplification is evident at terpene to THC ratios similar to those in the cannabis plant, which reflect very low terpene concentrations. For some terpenes, the activation obtained by THC- terpene mixtures is notably greater than the sum of the activations by the individual components, suggesting a synergistic effect. Our results strongly support a modulatory effect of some of the terpenes on the interaction between THC and the CB1 receptor. As the most effective terpenes are not necessarily the most abundant ones in the cannabis plant, reaching "whole plant" or "full spectrum" composition is not necessarily an advantage. For enhanced therapeutic effects, desired compositions are attainable by enriching extracts with selected terpenes. These compositions adjust the treatment for various desired medicinal and personal needs.
Collapse
Affiliation(s)
- Noa Raz
- Bazelet Medical Cannabis Group, Or Akiva, Israel
| | | | | | | | - Elyad M Davidson
- Department of Anesthesiology, CCM and Pain Relief, Hadassah Hebrew University Hospital Jerusalem, Israel
| | - Aviel Danieli
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Merav Tauber
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Yair Ben-Chaim
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel.
| |
Collapse
|
8
|
Schanknecht E, Bachari A, Nassar N, Piva T, Mantri N. Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment. Int J Mol Sci 2023; 24:ijms24010859. [PMID: 36614303 PMCID: PMC9820847 DOI: 10.3390/ijms24010859] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa's biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.
Collapse
Affiliation(s)
- Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Terrence Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
9
|
Chacon FT, Raup-Konsavage WM, Vrana KE, Kellogg JJ. Secondary Terpenes in Cannabis sativa L.: Synthesis and Synergy. Biomedicines 2022; 10:biomedicines10123142. [PMID: 36551898 PMCID: PMC9775512 DOI: 10.3390/biomedicines10123142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cannabis is a complex biosynthetic plant, with a long history of medicinal use. While cannabinoids have received the majority of the attention for their psychoactive and pharmacological activities, cannabis produces a diverse array of phytochemicals, such as terpenes. These compounds are known to play a role in the aroma and flavor of cannabis but are potent biologically active molecules that exert effects on infectious as well as chronic diseases. Furthermore, terpenes have the potential to play important roles, such as synergistic and/or entourage compounds that modulate the activity of the cannabinoids. This review highlights the diversity and bioactivities of terpenes in cannabis, especially minor or secondary terpenes that are less concentrated in cannabis on a by-mass basis. We also explore the question of the entourage effect in cannabis, which studies to date have supported or refuted the concept of synergy in cannabis, and where synergy experimentation is headed, to better understand the interplay between phytochemicals within Cannabis sativa L.
Collapse
Affiliation(s)
- Francisco T. Chacon
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joshua J. Kellogg
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence: ; Tel.: +1-814-865-2887
| |
Collapse
|
10
|
Di Sotto A, Gullì M, Minacori M, Mancinelli R, Garzoli S, Percaccio E, Incocciati A, Romaniello D, Mazzanti G, Eufemi M, Di Giacomo S. β-Caryophyllene Counteracts Chemoresistance Induced by Cigarette Smoke in Triple-Negative Breast Cancer MDA-MB-468 Cells. Biomedicines 2022; 10:2257. [PMID: 36140359 PMCID: PMC9496176 DOI: 10.3390/biomedicines10092257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Exposure to cigarette smoke (CS) has been associated with an increased risk of fatal breast cancers and recurrence, along with chemoresistance and chemotherapy impairment. This strengthens the interest in chemopreventive agents to be exploited both in healthy and oncological subjects to prevent or repair CS damage. In the present study, we evaluated the chemopreventive properties of the natural sesquiterpene β-caryophyllene towards the damage induced by cigarette smoke condensate (CSC) in triple negative breast cancer MDA-MB-468 cells. Particularly, we assessed the ability of the sesquiterpene to interfere with the mechanisms exploited by CSC to promote cell survival and chemoresistance, including genomic instability, cell cycle progress, autophagy/apoptosis, cell migration and related pathways. β-Caryophyllene was found to be able to increase the CSC-induced death of MDA-MB-468 cells, likely triggering oxidative stress, cell cycle arrest and apoptosis; moreover, it hindered cell recovery, autophagy activation and cell migration; at last, a marked inhibition of the signal transducer and activator of transcription 3 (STAT3) activation was highlighted: this could represent a key mechanism of the chemoprevention by β-caryophyllene. Although further studies are required to confirm the in vivo efficacy of β-caryophyllene, the present results suggest a novel strategy to reduce the harmful effect of smoke in cancer patients and to improve the survival expectations in breast cancer women.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Gullì
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Minacori
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Stefania Garzoli
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ester Percaccio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Donatella Romaniello
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Phytochemical Composition and Cytoprotective Properties of the Endemic Sideritis sipylea Boiss Greek Species: A Valorization Study. Pharmaceuticals (Basel) 2022; 15:ph15080987. [PMID: 36015136 PMCID: PMC9414158 DOI: 10.3390/ph15080987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Sideritis sipylea Boiss. (Fam. Lamiaceae) is an endemic plant of the North Aegean Islands (Greece), commonly known as ironwort. Traditionally, its aerial parts have been used to relieve several ailments, especially gastrointestinal disorders, however, with scant knowledge about the pharmacological basis. In the present study, an endemic S. sipylea Greek species from Lesvos Island has been characterized for phytochemical composition and biological activities, in order to give a possible scientific basis to its traditional use and to highlight a further nutraceutical interest as a source of bioactive phytochemicals and extracts. Three different fractions obtained from a methanolic extract of S. sipylea aerial parts by using ethyl acetate with 10 (S10), 20 (S20), and 50% (S50) methanol as fractionation solvents were phytochemically characterized. Moreover, their antioxidant power and cytoprotective activity in different human cell lines were evaluated. The phytochemical analysis highlighted the presence of flavonoids, iridoids, and phenolic acids in all the tested samples. Particularly, the S10 fraction mainly contained iridoids, while S20 and S50 lavandulifolioside and chlorogenic acid, respectively. The fractions also showed antioxidant properties, S10 and S20 being the most potent. When assessed in human cholangiocytes, they counteracted the cytotoxicity of the tBOOH pro-oxidant agent, by reducing ROS levels and affecting GSH antioxidant system. The present findings highlight a possible interest in S10 and S20 fractions from S. sipylea as sources of bioactive molecules and stimulate further studies in order to characterize their possible application for nutraceutical and pharmaceutical purposes.
Collapse
|
12
|
Sorafenib Chemosensitization by Caryophyllane Sesquiterpenes in Liver, Biliary, and Pancreatic Cancer Cells: The Role of STAT3/ABC Transporter Axis. Pharmaceutics 2022; 14:pharmaceutics14061264. [PMID: 35745837 PMCID: PMC9231089 DOI: 10.3390/pharmaceutics14061264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
A combination of anticancer drugs and chemosensitizing agents has been approached as a promising strategy to potentiate chemotherapy and reduce toxicity in aggressive and chemoresistant cancers, like hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and pancreatic ductal adenocarcinoma (PDAC). In the present study, the ability of caryophyllane sesquiterpenes to potentiate sorafenib efficacy was studied in HCC, CCA, and PDAC cell models, focusing on the modulation of STAT3 signaling and ABC transporters; tolerability studies in normal cells were also performed. Results showed that the combination of sorafenib and caryophyllane sesquiterpenes synergized the anticancer drug, especially in pancreatic Bx-PC3 adenocarcinoma cells; a similar trend, although with lower efficacy, was found for the standard ABC transporter inhibitors. Synergistic effects were associated with a modulation of MDR1 (or Pgp) and MRP transporters, both at gene and protein level; moreover, activation of STAT3 cascade and cell migration appeared significantly affected, suggesting that the STAT3/ABC-transporters axis finely regulated efficacy and chemoresistance to sorafenib, thus appearing as a suitable target to overcome drawbacks of sorafenib-based chemotherapy in hepato-biliary-pancreatic cancers. Present findings strengthen the interest in caryophyllane sesquiterpenes as chemosensitizing and chemopreventive agents and contribute to clarifying drug resistance mechanisms in HCC, CCA, and PDAC cancers and to developing possible novel therapeutic strategies.
Collapse
|
13
|
Harpagophytum procumbens Root Extract Mediates Anti-Inflammatory Effects in Osteoarthritis Synoviocytes through CB2 Activation. Pharmaceuticals (Basel) 2022; 15:ph15040457. [PMID: 35455454 PMCID: PMC9026917 DOI: 10.3390/ph15040457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
The endocannabinoid system is involved in the nociceptive and anti-inflammatory pathways, and a lowered expression of CB2 receptors has been associated with inflammatory conditions, such as osteoarthritis (OA). This suggests that CB2 modulators could be novel therapeutic tools to treat OA. In the present study, the involvement of Harpagophytum procumbens root extract, a common ingredient of nutraceuticals used to treat joint disorders, in CB2 modulation has been evaluated. Moreover, to clarify the effects of the pure single components, the bioactive constituent, harpagoside, and the main volatile compounds were studied alone or in a reconstituted mixture. Human fibroblast-like synoviocytes, extracted by joints of patients, who underwent a total knee replacement, were treated with an H. procumbens root extract dissolved in DMSO (HPEDMSO). The effectiveness of HPEDMSO to affect CB2 pathways was studied by analyzing the modulation of cAMP, the activation of PKA and ERK MAP kinase, and the modulation of MMP-13 production. HPEDMSO was able to inhibit the cAMP production and MAP kinase activation and to down-regulate the MMP-13 production. Pure compounds were less effective than the whole phytocomplex, thus suggesting the involvement of synergistic interactions. Present findings encourage further mechanistic studies and support the scientific basis of the use of H. procumbens in joint disorders.
Collapse
|
14
|
Novel Insights into the Immunomodulatory Effects of Caryophyllane Sesquiterpenes: A Systematic Review of Preclinical Studies. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Immunomodulation is a key factor in the homeostasis of organisms, both for physiological and inflammatory conditions. In this context, great attention has been devoted to immunomodulant agents, which can boost or modulate the immune system, thus favoring disease relief. The present systematic review is focused on the immunomodulatory properties of plant-based caryophyllane sesquiterpenes, which are unique natural compounds widely studied due to their multiple and pleiotropic bioactivities. Despite lacking clinical evidence, the selected studies highlighted the ability of these substances, especially β-caryophyllene and α-humulene, to modulate the immune system of both in vitro and in vivo models of disease, such as neurodegenerative and inflammatory-based diseases, cancer, and allergies; moreover, some mechanistic hypotheses have been made too. The present overview suggests a further interest in immunomodulation by caryophyllane sesquiterpenes as a possible novel strategy for immune-based diseases or as an adjuvant treatment and encourages further high-quality studies, using high-purity compounds, to better clarify the mechanisms accounting for these properties and to support a further pharmaceutical development.
Collapse
|