1
|
San Y, Xing Y, Li B, Zheng L. Effect of transglutaminase cross-linking on the structure and emulsification performance of heated black bean protein isolate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39520152 DOI: 10.1002/jsfa.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Transglutaminase (TGase) is a heat-resistant biocatalyst with strong catalytic activity, which functions effectively under moderate temperature and pH conditions, and is used widely in protein cross-linking and recombination. Transglutaminase cross-linking is a novel and specific modification method for black bean protein isolate (BBPI). This article investigates the effect of transglutaminase cross-linking on the structure and emulsification performance of heated BBPI. RESULTS Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that heated BBPI with TGase had a higher molecular weight than heated BBPI without TGase, and the protein bands widened with increasing enzyme activity, indicating that TGase cross-linking promoted protein molecule aggregation. A high molecular weight polymer can better stabilize the oil-water interface, preventing the emulsion from layering. Fourier transform infrared (FTIR) spectroscopy showed that the α-helix content decreased from 15.64% to 13.75%, and the β-sheet content increased from 48.13% to 54.08%. The decrease in α-helix content and increase in β-sheet content could make the structure more stable and improve the emulsifying properties of heated BBPI. When TGase was 20 U g-1, the protein emulsification activity index (EAI) reached its highest value of 1.87 m2 g-1, and the emulsification stability index (ESI) value was 0.27 min (P < 0.05); these figures were 0.19 m2 g-1, and 0.07 min higher, respectively, than in the sample without added TGase. CONCLUSION In summary, transglutaminase cross-linking has a positive effect on the structure and emulsification performance of heated BBPI and can be used as an effective method for BBPI modification. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue San
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yuejiao Xing
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Guoru Biotechnology Co., Ltd, Harbin, China
| |
Collapse
|
2
|
Petraru A, Amariei S. Rapeseed-An Important Oleaginous Plant in the Oil Industry and the Resulting Meal a Valuable Source of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:3085. [PMID: 39520003 PMCID: PMC11548519 DOI: 10.3390/plants13213085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Rapeseeds (Brassica napus), cultivated widely as a source of oil, generate substantial by-products after oil extraction. Unfortunately, rapeseed meal is considered a waste product and as such is discharged into environment as compost or used as animal feed. However, this meal is rich in bioactive compounds (proteins, minerals, fibers and polyphenols), indicating its potential for the development of value-added products. The meal shows a higher content of minerals, total dietary fibers and proteins. Rapeseed meal contains a proportion of oil rich in polyunsaturated fatty acids, predominately linoleic and α-linolenic acid. The amino acid proportion in the meal is higher than that in the seeds and contains essential amino acids, predominately valine. The analyses show the presence of valuable components in the cake, which makes it suitable for use in obtaining value-added products.
Collapse
Affiliation(s)
- Ancuţa Petraru
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | | |
Collapse
|
3
|
Aquilia S, Rosi L, Pinna M, Bianchi S, Giurlani W, Bonechi M, Ciardelli F, Papini AM, Bello C. Study of the Preparation and Properties of Chemically Modified Materials Based on Rapeseed Meal. Biomolecules 2024; 14:982. [PMID: 39199370 PMCID: PMC11352606 DOI: 10.3390/biom14080982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
In recent years, there has been increasing interest in developing novel materials based on natural biopolymers as a renewable alternative to petroleum-based plastics. The availability of proteins derived from agricultural by-products, along with their favourable properties, has fostered a renewed interest in protein-based materials, promoting research in innovative technologies. In this study, we propose the use of rapeseed protein-rich meal as the main ingredient for the preparation of novel sustainable materials combining excellent environmental properties such as biodegradability and renewability. The application of sustainable products in the present high-tech society requires the modification of the basic native properties of these natural compounds. The original route proposed in this paper consists of preparation via the compression moulding of flexible biomaterials stabilized by crosslinkers/chain extenders. An investigation of the effects of different denaturing and disulfide bond reducing agents, crosslinkers, and preparation conditions on the material mechanical behaviour demonstrated that the novel materials have appreciable strength and stiffness. The results show the potential of utilizing full meal from vegetable by-products to prepare protein-based materials with guaranteed ecofriendly characteristics and mechanical properties adequate for specific structural applications.
Collapse
Affiliation(s)
- Sara Aquilia
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy; (S.A.); (C.B.)
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy; (L.R.); (W.G.); (M.B.)
- Spin-PET S.r.l., Viale R. Piaggio 32, I-56025 Pontedera, Italy; (M.P.); (S.B.)
| | - Luca Rosi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy; (L.R.); (W.G.); (M.B.)
| | - Michele Pinna
- Spin-PET S.r.l., Viale R. Piaggio 32, I-56025 Pontedera, Italy; (M.P.); (S.B.)
| | - Sabrina Bianchi
- Spin-PET S.r.l., Viale R. Piaggio 32, I-56025 Pontedera, Italy; (M.P.); (S.B.)
| | - Walter Giurlani
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy; (L.R.); (W.G.); (M.B.)
| | - Marco Bonechi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy; (L.R.); (W.G.); (M.B.)
| | - Francesco Ciardelli
- Spin-PET S.r.l., Viale R. Piaggio 32, I-56025 Pontedera, Italy; (M.P.); (S.B.)
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy; (S.A.); (C.B.)
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy; (L.R.); (W.G.); (M.B.)
| | - Claudia Bello
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy; (S.A.); (C.B.)
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy; (L.R.); (W.G.); (M.B.)
| |
Collapse
|
4
|
Axentii M, Codină GG. Exploring the Nutritional Potential and Functionality of Hemp and Rapeseed Proteins: A Review on Unveiling Anti-Nutritional Factors, Bioactive Compounds, and Functional Attributes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1195. [PMID: 38732410 PMCID: PMC11085551 DOI: 10.3390/plants13091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Plant-based proteins, like those derived from hemp and rapeseed can contribute significantly to a balanced diet and meet human daily nutritional requirements by providing essential nutrients such as protein, fiber, vitamins, minerals, and antioxidants. According to numerous recent research papers, the consumption of plant-based proteins has been associated with numerous health benefits, including a reduced risk of chronic diseases such as heart disease, diabetes, and certain cancers. Plant-based diets are often lower in saturated fat and cholesterol and higher in fiber and phytonutrients, which can support overall health and well-being. Present research investigates the nutritional attributes, functional properties, and potential food applications of hemp and rapeseed protein for a potential use in new food-product development, with a certain focus on identifying anti-nutritional factors and bioactive compounds. Through comprehensive analysis, anti-nutritional factors and bioactive compounds were elucidated, shedding light on their impact on protein quality and digestibility. The study also delves into the functional properties of hemp and rapeseed protein, unveiling their versatility in various food applications. Insights from this research contribute to a deeper understanding of the nutritional value and functional potential of hemp and rapeseed protein, paving the way for their further utilization in innovative food products with enhanced nutritional value and notable health benefits.
Collapse
|
5
|
Licata M, Farruggia D, Di Miceli G, Salamone F, Iacuzzi N, Tuttolomondo T. Productivity of two Brassica oilseed crops in a Mediterranean environment and assessment of the qualitative characteristics of raw materials for bioenergy purposes. Heliyon 2024; 10:e26818. [PMID: 38434387 PMCID: PMC10907774 DOI: 10.1016/j.heliyon.2024.e26818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Rapeseed (Brassica napus var. oleifera D.C.) and Ethiopian mustard (Brassica carinata A. Braun) are promising industrial crops for cultivation in the Southern Mediterranean area due to profitable yields under semi-arid conditions. The exploitation of raw materials produced by these crops is very convenient for farmers to produce bioenergy directly on-farm and permits them to create a short agri-energy supply chain. The purpose of this study was to determine their yield performance under rainfed conditions and make an economic assessment of a combined heat and power plant (CHP) system operating on pure vegetable oil (PVO). Tests were conducted in Sicily (Italy) from 2012 to 2014. Seed and crop residue yields were detected. The analysis of seed, defatted seed meal and crop residue, and the chemical-physical aspects of PVO were carried out according to conventional protocols. A pilot CHP system was used for cogenerating electricity and heat. In general, rapeseed had the highest seed (2.27 t ha-1) and oil (1.11 t ha-1) yields. The average oil content ranged from 44.88 % (Ethiopian mustard) to 45.73 % dry matter (rapeseed). Ethiopian mustard performed better than rapeseed in terms of aboveground biomass yield (5.49 t ha-1), in both years. The two crops showed different fatty acid profiles of the oil mainly due to diverse content of erucic and oleic acids. The CHP system had an average consumption of 14.41 kg PVO h-1. These results confirm that the productivity of the species can be appreciable in the Southern Mediterranean area and indicate the use of raw materials of these crops as crucial to the development a sustainable short agri-energy supply chain.
Collapse
Affiliation(s)
- Mario Licata
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale Delle Scienze 13, Building 4, 90128, Palermo, Italy
- Research Consortium for the Development of Innovative Agro-Environmental Systems, Via Della Libertà 203, 90143, Palermo, Italy
| | - Davide Farruggia
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale Delle Scienze 13, Building 4, 90128, Palermo, Italy
| | - Giuseppe Di Miceli
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale Delle Scienze 13, Building 4, 90128, Palermo, Italy
| | - Francesco Salamone
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale Delle Scienze 13, Building 4, 90128, Palermo, Italy
| | - Nicolò Iacuzzi
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale Delle Scienze 13, Building 4, 90128, Palermo, Italy
| | - Teresa Tuttolomondo
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale Delle Scienze 13, Building 4, 90128, Palermo, Italy
| |
Collapse
|
6
|
Odinot E, Bisotto-Mignot A, Frezouls T, Bissaro B, Navarro D, Record E, Cadoret F, Doan A, Chevret D, Fine F, Lomascolo A. A New Phenolic Acid Decarboxylase from the Brown-Rot Fungus Neolentinus lepideus Natively Decarboxylates Biosourced Sinapic Acid into Canolol, a Bioactive Phenolic Compound. Bioengineering (Basel) 2024; 11:181. [PMID: 38391667 PMCID: PMC10886158 DOI: 10.3390/bioengineering11020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Rapeseed meal (RSM) is a cheap, abundant and renewable feedstock, whose biorefinery is a current challenge for the sustainability of the oilseed sector. RSM is rich in sinapic acid (SA), a p-hydroxycinnamic acid that can be decarboxylated into canolol (2,6-dimethoxy-4-vinylphenol), a valuable bioactive compound. Microbial phenolic acid decarboxylases (PADs), mainly described for the non-oxidative decarboxylation of ferulic and p-coumaric acids, remain very poorly documented to date, for SA decarboxylation. The species Neolentinus lepideus has previously been shown to biotransform SA into canolol in vivo, but the enzyme responsible for bioconversion of the acid has never been characterized. In this study, we purified and characterized a new PAD from the canolol-overproducing strain N. lepideus BRFM15. Proteomic analysis highlighted a sole PAD-type protein sequence in the intracellular proteome of the strain. The native enzyme (NlePAD) displayed an unusual outstanding activity for decarboxylating SA (Vmax of 600 U.mg-1, kcat of 6.3 s-1 and kcat/KM of 1.6 s-1.mM-1). We showed that NlePAD (a homodimer of 2 × 22 kDa) is fully active in a pH range of 5.5-7.5 and a temperature range of 30-55 °C, with optima of pH 6-6.5 and 37-45 °C, and is highly stable at 4 °C and pH 6-8. Relative ratios of specific activities on ferulic, sinapic, p-coumaric and caffeic acids, respectively, were 100:24.9:13.4:3.9. The enzyme demonstrated in vitro effectiveness as a biocatalyst for the synthesis of canolol in aqueous medium from commercial SA, with a molar yield of 92%. Then, we developed processes to biotransform naturally-occurring SA from RSM into canolol by combining the complementary potentialities of an Aspergillus niger feruloyl esterase type-A, which is able to release free SA from the raw meal by hydrolyzing its conjugated forms, and NlePAD, in aqueous medium and mild conditions. NlePAD decarboxylation of biobased SA led to an overall yield of 1.6-3.8 mg canolol per gram of initial meal. Besides being the first characterization of a fungal PAD able to decarboxylate SA, this report shows that NlePAD is very promising as new biotechnological tool to generate biobased vinylphenols of industrial interest (especially canolol) as valuable platform chemicals for health, nutrition, cosmetics and green chemistry.
Collapse
Affiliation(s)
- Elise Odinot
- OléoInnov, 19 Rue du Musée, F-13001 Marseille, France
| | - Alexandra Bisotto-Mignot
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Toinou Frezouls
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Bastien Bissaro
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - David Navarro
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Eric Record
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Frédéric Cadoret
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Annick Doan
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Didier Chevret
- INRAE, UMR1319 MICALIS Institute, PAPPSO, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| | - Frédéric Fine
- TERRES INOVIA, Parc Industriel, 11 Rue Monge, F-33600 Pessac, France
| | - Anne Lomascolo
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| |
Collapse
|
7
|
Liu H, Li Z, Xia X, Zhang R, Wang W, Xiang X. Chemical profile of phenolic extracts from rapeseed meal and inhibitory effects on α-glucosidase: UPLC-MS/MS analysis, multispectral approaches, molecular simulation and ADMET analysis. Food Res Int 2023; 174:113517. [PMID: 37986420 DOI: 10.1016/j.foodres.2023.113517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Rapeseed meal (RSM) is the by-product of rapeseed processing that enriches phenolic compounds. However, the comprehensive characterization of its phenolic substances in terms of composition and potential activities remains incomplete, leading to limited utilization in the food industry. In this study, the phenolic profile from RSM (referred to as RMP) was identified, and their inhibitory effects on α-glucosidase were investigated. UPLC-MS/MS analysis showed that a total of 466 phenolic compounds were detected in RMP. The primary components were sinapic acid (SA), caffeic acid (CA), salicylic acid (SAA), and astragalin (AS). Multispectral approaches demonstrated significant inhibitory capacity of RMP against α-glucosidase with a half inhibition value (IC50) of 0.32 mg/mL, with a stronger inhibition compared to CA/SAA/AS (IC50: 4.0, 5.9, and 0.9 mg/mL) in addition to the previously reported SA, suggesting a synergistic effect. Both RMP and CA/SAA/AS altered the secondary structure of α-glucosidase to quench its intrinsic fluorescence. Molecular simulation results revealed that hydrogen bonds and van der Waals forces primarily contributed to the interaction between CA/SAA/AS and α-glucosidase, as well as verified the stability of the binding process over the entire simulation duration. The ADMET analysis showed that CYP2D6 was not inhibited by CA/SAA/AS, which had no AMES toxicity, hepatotoxicity, and skin sensitization. This finding suggests the potential of RMP against α-glucosidase for the treatment of diabetes.
Collapse
Affiliation(s)
- Huihui Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ziliang Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiaoyang Xia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ruiying Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wen Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xia Xiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
8
|
Cairone F, Allevi D, Cesa S, Fabrizi G, Goggiamani A, Masci D, Iazzetti A. Valorisation of Side Stream Products through Green Approaches: The Rapeseed Meal Case. Foods 2023; 12:3286. [PMID: 37685219 PMCID: PMC10486371 DOI: 10.3390/foods12173286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Rapeseed meal (RSM) is a by-product of rapeseed oil extraction and is a rich source of bioactive compounds, including proteins and antioxidants. This study compared two methods for extracting antioxidants from RSM: conventional ethanol Soxhlet extraction and supercritical CO2 extraction. These procedures were applied to both native RSM and RSM after protein removal to evaluate their bio-compound composition and potential applications. HPLC-DAD, NMR, and GC/MS analyses revealed a rich polyphenolic profile in the extracts, including the presence of sinapic acid. The concentration of sinapic acid varied depending on the extraction method used. The anti-radical activity of the extracts was also analysed using the DPPH assay, which confirmed the potential of RSM as a source of antioxidants for use in cosmetics, food, and pharmaceutical formulations.
Collapse
Affiliation(s)
- Francesco Cairone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy; (F.C.); (S.C.); (G.F.); (A.G.)
| | - Dario Allevi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (D.A.); (D.M.)
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, Italy
| | - Stefania Cesa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy; (F.C.); (S.C.); (G.F.); (A.G.)
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy; (F.C.); (S.C.); (G.F.); (A.G.)
| | - Antonella Goggiamani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy; (F.C.); (S.C.); (G.F.); (A.G.)
| | - Domiziana Masci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (D.A.); (D.M.)
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, Italy
| | - Antonia Iazzetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (D.A.); (D.M.)
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, Italy
| |
Collapse
|
9
|
Liu P, Gong Y, Yang C, Ledesma-Amaro R, Park YK, Deng S, Wang Y, Wei H, Chen W. Biorefining of rapeseed meal: A new and sustainable strategy for improving Cr(VI) biosorption on residual wastes from agricultural byproducts after phenolic extraction. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 165:70-81. [PMID: 37086658 DOI: 10.1016/j.wasman.2023.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Phenolic recovery from agricultural byproducts has been highlighted due to their health-promoting bioactivities. However, uncontrolled discard of residues after extraction process would induce environmental pollution and bioresource waste. In this study, biorefining of phenolic-rich rapeseed meal (RSM) and its defatted sample (dRSM) was attempted by holistic utilization of phenolic extract and residue separately. Phenolic removal could significantly improve residues' Cr(VI) adsorption capacities by about 21%, which presented extended physical surface and more released functional groups. Moreover, simulating raw material by remixing 3% separated phenolic extracts or main component sinapic acid therein with corresponding residues further improved about 12% adsorption efficiencies. These indicated that the different present forms of phenolics had opposite effects on Cr(VI) removal. While natural conjugational form inhibited hosts' biosorption, free form had enhanced functions for either extract or residue. Four optimal adsorption parameters (pH, adsorbent dosage, contact time and initial Cr(VI) concentration), three kinetic (pseudo-first order, pseudo-second order and intra-particle diffusion) models and two isotherms (Langmuir and Freundlich) were used to reveal the adsorption process. The maximum Cr(VI) adsorption capacity on residues could reach about 100 mg/g, which was superior to that of most biosorbents derived from agricultural byproducts, even some biochar. Together with the residues' advantages with everlasting capacity after 3 adsorption-desorption cycles and excellent abilities for adsorbing multiple co-existed metal ions (Cr(VI), Cd(II), Cu(II), Pb(II), Ni(II) and Zn(II)), phenolic recovery was first proved to be a new and sustainable strategy for modifying biosorbents from agricultural byproducts with zero waste.
Collapse
Affiliation(s)
- Pei Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Yangmin Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Chen Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Young-Kyoung Park
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Shiyu Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Yuliang Wang
- Hubei University of Technology, Wuhan 430068, PR China
| | - Hongbo Wei
- Yangtze University, Jingzhou 434025, PR China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China.
| |
Collapse
|
10
|
An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
11
|
Di Lena G, Schwarze AK, Lucarini M, Gabrielli P, Aguzzi A, Caproni R, Casini I, Ferrari Nicoli S, Genuttis D, Ondrejíčková P, Hamzaoui M, Malterre C, Kafková V, Rusu A. Application of Rapeseed Meal Protein Isolate as a Supplement to Texture-Modified Food for the Elderly. Foods 2023; 12:foods12061326. [PMID: 36981253 PMCID: PMC10048395 DOI: 10.3390/foods12061326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Rapeseed meal (RSM), a by-product of rapeseed oil extraction, is currently used for low-value purposes. With a biorefinery approach, rapeseed proteins may be extracted and recovered for high-end uses to fully exploit their nutritional and functional properties. This study reports the application of RSM protein isolate, the main output of a biorefining process aimed at recovering high-value molecules from rapeseed meal, as a supplement to texture-modified (TM) food designed for elderly people with mastication and dysphagia problems. The compositional (macronutrients by Official Methods of Analyses, and mineral and trace element profiles using Inductively Coupled Plasma Optical Emission Spectrometry ICP-OES), nutritional and sensory evaluations of TM chicken breast, carrots and bread formulated without and with RSM protein supplementation (5% w/w) are hereby reported. The results show that the texture modification of food combined with rapeseed protein isolate supplementation has a positive impact on the nutritional and sensory profile of food, meeting the special requirements of seniors. TM chicken breast and bread supplemented with RSM protein isolate showed unaltered or even improved sensory properties and a higher nutrient density, with particular regard to proteins (+20-40%) and minerals (+10-16%). Supplemented TM carrots, in spite of the high nutrient density, showed a limited acceptability, due to poor sensory properties that could be overcome with an adjustment to the formulation. This study highlights the potentialities of RSM as a sustainable novel protein source in the food sector. The application of RSM protein proposed here is in line with the major current challenges of food systems such as the responsible management of natural resources, the valorization of agri-food by-products, and healthy nutrition with focus on elderly people.
Collapse
Affiliation(s)
- Gabriella Di Lena
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | | | - Massimo Lucarini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Paolo Gabrielli
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Altero Aguzzi
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Roberto Caproni
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Irene Casini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | | | | | | | | | | | - Valentína Kafková
- Centrum Výskumu a Vývoja, s. r.o. (Centre for Research and Development), Trnavská Cesta 1033/7, 920 41 Leopoldov, Slovakia
| | - Alexandru Rusu
- Biozoon GmbH, Nansenstraße 8, 27572 Bremerhaven, Germany
| |
Collapse
|
12
|
Constantinescu-Aruxandei D, Oancea F. Closing the Nutrient Loop-The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2096. [PMID: 36767462 PMCID: PMC9915181 DOI: 10.3390/ijerph20032096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The recovery of plant mineral nutrients from the bio-based value chains is essential for a sustainable, circular bioeconomy, wherein resources are (re)used sustainably. The widest used approach is to recover plant nutrients on the last stage of biomass utilization processes-e.g., from ash, wastewater, or anaerobic digestate. The best approach is to recover mineral nutrients from the initial stages of biomass biorefinery, especially during biomass pre-treatments. Our paper aims to evaluate the nutrient recovery solutions from a trans-sectorial perspective, including biomass processing and the agricultural use of recovered nutrients. Several solutions integrated with the biomass pre-treatment stage, such as leaching/bioleaching, recovery from pre-treatment neoteric solvents, ionic liquids (ILs), and deep eutectic solvents (DESs) or integrated with hydrothermal treatments are discussed. Reducing mineral contents on silicon, phosphorus, and nitrogen biomass before the core biorefinery processes improves processability and yield and reduces corrosion and fouling effects. The recovered minerals are used as bio-based fertilizers or as silica-based plant biostimulants, with economic and environmental benefits.
Collapse
Affiliation(s)
| | - Florin Oancea
- Department of Bioresources, Bioproducts Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania
| |
Collapse
|
13
|
Tileuberdi N, Turgumbayeva A, Yeskaliyeva B, Sarsenova L, Issayeva R. Extraction, Isolation of Bioactive Compounds and Therapeutic Potential of Rapeseed ( Brassica napus L.). Molecules 2022; 27:8824. [PMID: 36557956 PMCID: PMC9781536 DOI: 10.3390/molecules27248824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Rapeseed (Brassica napus L.) is a herbaceous annual plant of the Cruciferous family, the Cabbage genus. This oilseed crop is widely used in many areas of industry and agriculture. High-quality oil obtained from rapeseed can be found in many industrial food products. To date, extracts with a high content of biologically active substances are obtained from rapeseed using modern extraction methods. Brassica napus L. seeds contain polyunsaturated and monounsaturated fatty acids, carotenoids, phytosterols, flavonoids, vitamins, glucosinolates and microelements. The data in this review show that rapeseed biocompounds have therapeutic effects in the treatment of various types of diseases. Some studies indicate that rapeseed can be used as an anti-inflammatory, antioxidant, antiviral, hypoglycemic and anticancer agent. In the pharmaceutical industry, using rapeseed as an active ingredient may help to develop new forms drugs with wide range of therapeutic effects. This review focuses on aspects of the extraction of biocompounds from rapeseed and the study of its pharmacological properties.
Collapse
Affiliation(s)
- Nazym Tileuberdi
- Faculty of Medicine and Healthcare, Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Aknur Turgumbayeva
- Faculty of Medicine and Healthcare, Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Lazzat Sarsenova
- Faculty of Medicine and Healthcare, Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Raushan Issayeva
- Faculty of Medicine and Healthcare, Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
14
|
Vlassa M, Filip M, Țăranu I, Marin D, Untea AE, Ropotă M, Dragomir C, Sărăcilă M. The Yeast Fermentation Effect on Content of Bioactive, Nutritional and Anti-Nutritional Factors in Rapeseed Meal. Foods 2022; 11:foods11192972. [PMID: 36230048 PMCID: PMC9562236 DOI: 10.3390/foods11192972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to evaluate the changes in the content of bioactive, nutritional and anti-nutritional factors in rapeseed meal that was fermented with Saccharomyces cerevisiae or Saccharomyces boulardii yeasts at two different periods of time, for improvement of nutritional characteristics in piglets’ feeding. The fermentation has reduced the content of two anti-nutritional factors, intact glucosinolates and 3-butyl isothiocyanate, by 51.60–66.04% and 55.21–63.39%, respectively, by fermentation with either Saccharomyces cerevisiae or Saccharomyces boulardii for 24 h. The fermentation by these yeasts also lowered the content of total polyphenolic compounds by 21.58–23.55% and antioxidant activity (DPPH) by 17.03–21.07%. Furthermore, the content of carbohydrates and organic acids has dramatically decreased between 89.20 and 98.35% and between 31.48 and 77.18%, respectively. However, the content of some individual phenolic acids (gallic, p-coumaric, sinapic) and crude protein content (10–13%) has been increased. Thus, the results showed that fermentation with Saccharomyces cerevisiae or Saccharomyces boulardii has reduced the content of antinutritive factors and increased the protein content of the rapeseed meal, without major adverse effects on its overall nutritive value.
Collapse
Affiliation(s)
- Mihaela Vlassa
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 400294 Cluj-Napoca, Romania
| | - Miuța Filip
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 400294 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-580165; Fax: +40-264-420441
| | - Ionelia Țăranu
- National Institute for Research and Development for Biology and Animal Nutrition, 077015 Ilfov, Romania
| | - Daniela Marin
- National Institute for Research and Development for Biology and Animal Nutrition, 077015 Ilfov, Romania
| | - Arabela Elena Untea
- National Institute for Research and Development for Biology and Animal Nutrition, 077015 Ilfov, Romania
| | - Mariana Ropotă
- National Institute for Research and Development for Biology and Animal Nutrition, 077015 Ilfov, Romania
| | - Cătălin Dragomir
- National Institute for Research and Development for Biology and Animal Nutrition, 077015 Ilfov, Romania
| | - Mihaela Sărăcilă
- National Institute for Research and Development for Biology and Animal Nutrition, 077015 Ilfov, Romania
| |
Collapse
|