1
|
Niwetmarin W, Saesian N, Saruengkhanphasit R, Eurtivong C, Thasana N, Ruchirawat S. Metal- and photocatalyst-free approach to visible-light-induced acylation of quinoxalinones. Org Biomol Chem 2024; 22:5924-5929. [PMID: 38698760 DOI: 10.1039/d4ob00630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A transition-metal- and photocatalyst-free photochemical reaction was successfully developed for the direct acylation of quinoxalin-2(1H)-ones, which was enabled by the formation of electron donor-acceptor (EDA) complexes. The use of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the electron donor allows efficient and operationally simple access to a series of C3-aroylated and acylated quinoxalin-2(1H)-ones with moderate to good yields.
Collapse
Affiliation(s)
- Worawat Niwetmarin
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Naiyana Saesian
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
| | | | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Nopporn Thasana
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
2
|
Liu W, Liu X, Liu R, Zhao H, Xia Z. Self-Catalyzed, Visible-Light-Induced Selective C3-H Aroylation of Quinoxalin-2(1 H)-ones with Arylaldehydes by Air as an Oxidant. J Org Chem 2024; 89:7233-7242. [PMID: 38666895 DOI: 10.1021/acs.joc.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A self-catalyzed, visible-light-induced, directly selective C3-H aroylation of quinoxalin-2(1H)-ones via energy transfer and hydrogen atom transfer (HAT) catalysis has been developed. The method is highly atom-economical, eco-friendly, and easy to handle. Notably, the reaction proceeded efficiently with ambient air as the sole oxidant at room temperature.
Collapse
Affiliation(s)
- Wenhao Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, 102206 Beijing, China
| | - Xingyuan Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, 102206 Beijing, China
| | - Runjiao Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, 102206 Beijing, China
| | - Hanqing Zhao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, 102206 Beijing, China
| | - Zihao Xia
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, 102206 Beijing, China
| |
Collapse
|
3
|
Zhou N, Wang L, Zhao F, Gao X, Zhao X, Zhang M. NHC-Catalyzed Tandem Reaction: A Strategy for the Synthesis of 2-Pyrrolidinone-Functionalized Phenanthridines. J Org Chem 2023; 88:16556-16565. [PMID: 37971950 DOI: 10.1021/acs.joc.3c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Herein, an N-heterocyclic carbene (NHC)-catalyzed tandem cyclization/addition/cyclization reaction of 2-isocyanobiaryls and α-bromo-N-cinnamylamides for the synthesis of 2-pyrrolidinone-functionalized phenanthridines is developed. This protocol features a radical cascade process, broad substrate scope, and good functional group compatibility under metal- and oxidant-free reaction conditions.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fangli Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiang Gao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaowei Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
4
|
Bao L, Wang ZX, Chen XY. Photoinduced N-Heterocyclic Nitrenium-Catalyzed Single Electron Reduction of Acyl Fluorides for Phenanthridine Synthesis. Org Lett 2023; 25:565-568. [PMID: 36637257 DOI: 10.1021/acs.orglett.3c00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Acyl fluorides are versatile reagents in organic synthesis. However, there is no precedent to employ acyl fluorides as acyl radical precursors. We herein report an N-heterocyclic nitrenium iodide salt-catalyzed photoreduction of acyl fluorides to produce acyl radicals, which could react with 2-isocyanobiaryls to afford various carbonyl phenanthridines.
Collapse
Affiliation(s)
- Lei Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
5
|
Wang M, Liu J, Zhang Y, Sun P. Decarbonylative C3‐Alkylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes via Photocatalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jie Liu
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000 CHINA
| | | | | |
Collapse
|