1
|
Wang J, Dong Z, Shi X. Modified rat pup cerebrospinal fluid collection method. J Neurosci Methods 2024; 412:110302. [PMID: 39413851 DOI: 10.1016/j.jneumeth.2024.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) reflects biochemical changes in the brain due to its direct contact with brain interstitial fluid, making it a valuable tool for diagnosing and monitoring disease progression and therapeutic effectiveness in clinical practice. However, collecting CSF in animal studies, particularly from small animals like rat pups or mice, poses significant challenges. NEW METHOD After attempting various reported protocols, we encountered difficulties in consistently obtaining sufficient CSF from rat pups (P7-P42). Consequently, we modified these methods and developed a protocol with controllable and precise parameters for each step, enhancing reproducibility across different researchers. RESULTS The newly developed method enables rapid, single-operator, and reproducible CSF extraction while ensuring high-quality (the absorbance of the "quality control solution" at 415 nm < 0.05 AU, an indicator of oxyhemoglobin contamination for the collected CSF samples) and high-yield samples (33 ± 2.128 μL for P7 pups, 34.10 ± 2.747 μL for P8 pups, 36.67 ± 3.997 μL for P9 pups, 36.90 ± 1.946 μL for P10 pups, 35.11 ± 3.285 μL for P10 hypoxic-ischemic brain damage (HIBD) pups and 51.70 ± 5.256 μL for P42 pups, respectively). COMPARISON WITH EXISTING METHODS Unlike existing methods of CSF extraction in rat pups, our protocol has reproducible capillary pipette pulling parameters, controllable CSF quality indexes, and can be operated by a single person with high yield in a short time. CONCLUSIONS This paper provides a step-by-step comparison and discussion of the CSF collection process, establishing a method that enables a single operator to collect CSF rapidly, consistently, sufficiently, and with controlled quality.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| | - Xiuyu Shi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
2
|
Zhuang W, Wang M, Lu M, Chen Z, Luo M, Lin W, Wang X. Dysregulation of cerebrospinal fluid metabolism profiles in spinal muscular atrophy patients: a case control study. Ital J Pediatr 2024; 50:154. [PMID: 39175089 PMCID: PMC11342544 DOI: 10.1186/s13052-024-01726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a neurodegenerative disorder. Although prior studies have investigated the metabolomes of SMA in various contexts, there is a gap in research on cerebrospinal fluid (CSF) metabolomics compared to healthy controls. CSF metabolomics can provide insights into central nervous system function and patient outcomes. This study aims to investigate CSF metabolite profiles in untreated SMA patients to enhance our understanding of SMA metabolic dysregulation. METHODS This case control study included 15 SMA patients and 14 control subjects. CSF samples were collected, and untargeted metabolomics was conducted to detect metabolites in SMA and control groups. RESULTS A total of 118 metabolites abundance were significantly changed between the SMA and control groups. Of those, 27 metabolites with variable importance for the projection (VIP) ≥ 1.5 were identified. The top 5 differential metabolites were N-acetylneuraminic acid (VIP = 2.38, Fold change = 0.43, P = 5.49 × 10-5), 2,3-dihydroxyindole (VIP = 2.33, Fold change = 0.39, P = 1.81 × 10-4), lumichrome (VIP = 2.30, Fold change = 0.48, P = 7.90 × 10-5), arachidic acid (VIP = 2.23, Fold change = 10.79, P = 6.50 × 10-6), and 10-hydroxydecanoic acid (VIP = 2.23, Fold change = 0.60, P = 1.44 × 10-4). Cluster analysis demonstrated that the differentially metabolites predominantly clustered within two main categories: protein and amino acid metabolism, and lipid metabolism. CONCLUSIONS The findings highlight the complexity of SMA, with widespread effects on multiple metabolic pathways, particularly in amino acid and lipid metabolism. N-acetylneuraminic acid may be a potential treatment for functional improvement in SMA. The exact mechanisms and potential therapeutic targets associated with metabolic dysregulation in SMA require further investigation.
Collapse
Affiliation(s)
- Wei Zhuang
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Minying Wang
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Mei Lu
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhehui Chen
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Meifen Luo
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wanlong Lin
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.
| | - Xudong Wang
- Department of Xiamen Newborn Screening Center, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Lin Q, Huang E, Fan K, Zhang Z, Shangguan H, Zhang W, Fang W, Ou Q, Liu X. Cerebrospinal Fluid Neutrophil Gelatinase-Associated Lipocalin as a Novel Biomarker for Postneurosurgical Bacterial Meningitis: A Prospective Observational Cohort Study. Neurosurgery 2024:00006123-990000000-01205. [PMID: 38856216 DOI: 10.1227/neu.0000000000003021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Postneurosurgical bacterial meningitis (PNBM) was a significant clinical challenge, as early identification remains difficult. This study aimed to explore the potential of neutrophil gelatinase-associated lipocalin (NGAL) as a novel biomarker for the early diagnosis of PNBM in patients who have undergone neurosurgery. METHODS A total of 436 postneurosurgical adult patients were enrolled in this study. Clinical information, cerebrospinal fluid (CSF), and blood samples were collected. After the screening, the remaining 267 patients were divided into the PNBM and non-PNBM groups, and measured CSF and serum NGAL levels to determine the diagnostic utility of PNBM. Subsequently, patients with PNBM were categorized into gram-positive and gram-negative bacterial infection groups to assess the effectiveness of CSF NGAL in differentiating between these types of infections. We analyzed the changes in CSF NGAL expression before and after anti-infection treatment in PNBM. Finally, an additional 60 patients were included as an independent validation cohort to further validate the diagnostic performance of CSF NGAL. RESULTS Compared with the non-PNBM group, CSF NGAL was significantly higher in the PNBM group (305.1 [151.6-596.5] vs 58.5 [30.7-105.8] ng/mL; P < .0001). The area under the curve of CSF NGAL for diagnosing PNBM was 0.928 (95% CI: 0.897-0.960), at a threshold of 119.7 ng/mL. However, there was no significant difference in serum NGAL between the 2 groups (142.5 [105.0-248.6] vs 161.9 [126.6-246.6] ng/mL, P = .201). Furthermore, CSF NGAL levels were significantly higher in patients with gram-negative bacterial infections than those with gram-positive bacteria (P = .023). In addition, CSF NGAL levels decrease after treatment compared with the initial stage of infection (P < .0001). Finally, in this validation cohort, the threshold of 119.7 ng/mL CSF NGAL shows good diagnostic performance with a sensitivity and specificity of 90% and 80%, respectively. CONCLUSION CSF NGAL holds promise as a potential biomarker for the diagnosis, early drug selection, and efficacy monitoring of PNBM.
Collapse
Affiliation(s)
- Qingwen Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Er Huang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kengna Fan
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zeqin Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huangcheng Shangguan
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Weiqing Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenhua Fang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaofeng Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Mohamed AA, Dagra A, Lucke-Wold B. Commentary: Cerebrospinal Fluid Neutrophil Gelatinase-Associated Lipocalin as a Novel Biomarker for Post-Neurosurgical Bacterial Meningitis: A Prospective Observational Cohort Study. Neurosurgery 2024:00006123-990000000-01202. [PMID: 38856200 DOI: 10.1227/neu.0000000000003041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Affiliation(s)
- Ali Ahmed Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Abeer Dagra
- Lillian S Well Neurosurgery Department, University of Florida, Gainesville, Florida, USA
| | - Brandon Lucke-Wold
- Lillian S Well Neurosurgery Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Wang Y, Liu Y, Yang S, Yi J, Xu X, Zhang K, Liu B, Qian K. Host-Guest Self-Assembled Interfacial Nanoarrays for Precise Metabolic Profiling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207190. [PMID: 36703514 DOI: 10.1002/smll.202207190] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Accurate and rapid metabolic profiling of cerebrospinal fluid (CSF) is urgently needed but remains challenging for clinical diagnosis of central nervous system diseases and biomarker discovery. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) holds promise for metabolic analysis. Its low signal reproducibility, however, severely restricts acquisition of quantitative MS data in clinical practice. Herein, a multifunctional self-assembled AuNPs array (MSANA)-based LDI-MS platform for direct amino acids analysis and metabolic profiling in patient CSF samples is developed. MSANA featuring a highly ordered and closely packed two-dimensional nanostructure permits capture and direct analysis of aromatic amino acids by LDI-MS with high selectivity and micromolar sensitivity. Meanwhile, the MSANA-based LDI-MS platform exhibits excellent reproducibility (RSD < 10%), largely outperforming the direct matrix spotting approach widely used now (RSD < 44%). The platform is successfully used in metabolic profiling of CSF (1 µL) within minutes for discrimination of medulloblastoma patients from non-tumor controls. Taken together, the MSANA-based LDI-MS platform shows potential clinical values toward large-scale metabolic diagnostics and pathogenic mechanism study.
Collapse
Affiliation(s)
- Yuning Wang
- Department of Chemistry, Shanghai Stomatological Hospital and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yu Liu
- Department of Neurosurgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, P. R. China
| | - Shouzhi Yang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jia Yi
- Department of Chemistry, Shanghai Stomatological Hospital and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaoyu Xu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Kun Zhang
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
6
|
Lathe R, Schultek NM, Balin BJ, Ehrlich GD, Auber LA, Perry G, Breitschwerdt EB, Corry DB, Doty RL, Rissman RA, Nara PL, Itzhaki R, Eimer WA, Tanzi RE. Establishment of a consensus protocol to explore the brain pathobiome in patients with mild cognitive impairment and Alzheimer's disease: Research outline and call for collaboration. Alzheimers Dement 2023; 19:5209-5231. [PMID: 37283269 PMCID: PMC10918877 DOI: 10.1002/alz.13076] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 06/08/2023]
Abstract
Microbial infections of the brain can lead to dementia, and for many decades microbial infections have been implicated in Alzheimer's disease (AD) pathology. However, a causal role for infection in AD remains contentious, and the lack of standardized detection methodologies has led to inconsistent detection/identification of microbes in AD brains. There is a need for a consensus methodology; the Alzheimer's Pathobiome Initiative aims to perform comparative molecular analyses of microbes in post mortem brains versus cerebrospinal fluid, blood, olfactory neuroepithelium, oral/nasopharyngeal tissue, bronchoalveolar, urinary, and gut/stool samples. Diverse extraction methodologies, polymerase chain reaction and sequencing techniques, and bioinformatic tools will be evaluated, in addition to direct microbial culture and metabolomic techniques. The goal is to provide a roadmap for detecting infectious agents in patients with mild cognitive impairment or AD. Positive findings would then prompt tailoring of antimicrobial treatments that might attenuate or remit mounting clinical deficits in a subset of patients.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Brian J. Balin
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Richard L. Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego and VA San Diego Healthcare System, La Jolla, CA
| | | | - Ruth Itzhaki
- Institute of Population Ageing, University of Oxford, Oxford, UK
| | - William A. Eimer
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- McCance Cancer Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- McCance Cancer Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Intracell Research Group Consortium Collaborators
- David L. Hahn (Intracell Research Group, USA), Benedict C. Albensi (Nova Southeastern, USA), James St John (Griffith University, Australia), Jenny Ekberg (Griffith University, Australia), Mark L. Nelson (Intracell Research Group, USA), Gerald McLaughlin (National Institutes of Health, USA), Christine Hammond (Philadelphia College of Osteopathic Medicine, USA), Judith Whittum-Hudson (Wayne State University, USA), Alan P. Hudson (Wayne State University, USA), Guillaume Sacco (Université Cote d’Azur, Centre Hospitalier Universitaire de Nice, CoBTek, France), Alexandra Konig (Université Cote d’Azur and CoBTek, France), Bruno Pietro Imbimbo (Chiesi Farmaceutici, Parma, Italy), Nicklas Linz (Ki Elements Ltd, Saarbrücken, Germany), Nicole Danielle Bell (Author, 'What Lurks in the Woods'), Shima T. Moein (Smell and Taste Center, Department of Otorhinolaryngology, Perelman School of Medicine, University of Philadelphia, USA), Jürgen G. Haas (Infection Medicine, University of Edinburgh Medical School, UK)
| |
Collapse
|
7
|
Analysis of Cerebrospinal Fluid Routine Biochemical Level, Pathogenic Bacteria Distribution, and Risk Factors in Patients with Secondary Intracranial Infection after Brain Tumor Surgery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7716205. [PMID: 36159580 PMCID: PMC9507738 DOI: 10.1155/2022/7716205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Purpose. Analysis of routine biochemical levels of cerebrospinal fluid (CSF), distribution of pathogenic bacteria, and risk factors in patients with intracranial infections secondary to brain tumour surgery. Methods. A total of 208 patients admitted to our hospital for brain tumour surgery from January 2020 to May 2022 were selected. Fully automated biochemical analyzer was employed for CSF routine and for measuring biochemical parameters such as white blood cell (WBC), micrototal protein (M-TP), glucose (GLU), and chlorine (CI). Double antibody sandwich assay for CSF procalcitonin (PCT), heparin-binding protein (HBP), and matrix metalloproteinase-9 (MMP-9) was performed. Fully automated microbiological analyzer for pathogen identification was utilized. Based on the above results, we determined whether the patients had secondary intracranial infections after surgery and analyzed the risk factors for secondary intracranial infections after brain tumour surgery by univariate and multifactorial logistic regression. Results. Among 208 patients with brain tumour surgery, 65 cases (31.25%) had secondary intracranial infection and 143 cases (68.75%) had no secondary intracranial infection. The levels of WBC, M-TP, CI, PCT, HBP, and MMP-9 in the CSF of intracranially infected patients were significantly higher than those of uninfected patients (
), and GLU was significantly lower than that of uninfected patients (
), and the levels of PCT, HBP, and MMP-9 in infected patients were significantly lower than those before treatment after 3, 7, and 10 d and tended to decrease over time (
). A total of 62 pathogenic strains were isolated from 65 intracranial infections, of which 41 (66.13%) were Gram-negative bacteria, mainly resistant to amikacin and ciprofloxacin and sensitive to meropenem and imipenem; 19 (30.65%) were Gram-positive bacteria, mainly highly resistant to penicillin and erythromycin and sensitive to vancomycin. Univariate analysis showed that age, gender, tumour type, history of glucocorticoid application, and prophylactic application of antibiotics were not associated with secondary intracranial infection after brain tumour surgery (
); tumour site, operation time, postoperative indwelling drainage time, postoperative cerebrospinal fluid leakage, and history of diabetics were all associated with secondary intracranial infection after brain tumour surgery (
). Multivariate logistic regression analysis showed that infratentorial tumour, operation time ≥4 h, postoperative indwelling drainage time ≥24 h, and postoperative cerebrospinal fluid leakage were independent risk factors for secondary intracranial infection after brain tumour surgery (
). Conclusion. Patients with intracranial infections secondary to brain tumour surgery have abnormal levels of CSF routine and biochemical parameters, and the detection rate of Gram-negative bacteria is higher than that of Gram-positive bacteria in patients. Treatment should be based on the characteristics of pathogenic bacteria and risk factors with targeted interventions to reduce intracranial infections.
Collapse
|