1
|
Li B, Yin X, Cen B, Duan W, Lin G, Wang X, Zou R. High value-added application of natural forest product α-pinene: design, synthesis and 3D-QSAR study of novel α-campholenic aldehyde-based 4-methyl-1,2,4-triazole-thioether compounds with significant herbicidal activity. Nat Prod Res 2024; 38:359-364. [PMID: 36008869 DOI: 10.1080/14786419.2022.2117176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
For exploring novel natural product-derived herbicides, 16 novel α-campholenic aldehyde-based 4-methyl-1,2,4-triazole-thioether compounds were designed, synthesized, and characterized by FT-IR, 1H NMR, 13C NMR, ESI-MS and elemental analysis. The preliminary bioassay showed that, at 100 µg/mL, most of the target compounds displayed significant inhibition activity against root-growth of rape(Brassica campestris L.), with inhibition rates of 85.0%~98.2%(A-class activity level), much better than that of the positive control flumioxazin. In addition, an effective and reasonable 3D-QSAR model was established by CoMFA method in SYBYL-X 2.1.1 software. It was found that, the steric field was the major factor towards the herbicidal activity of the target compounds against B. campestris L., and the introduction of bulky groups into m- and p-position of the benzene ring was favourable to increase the herbicidal activity. This kind of title compounds deserved further study as potential leading compounds for the discovery and development of novel herbicidal agents.
Collapse
Affiliation(s)
- Baoyu Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Xianlong Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Bo Cen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Guishan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Xiaoyu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Renxuan Zou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| |
Collapse
|
2
|
Tian G, Song Q, Liu Z, Guo J, Cao S, Long S. Recent advances in 1,2,3- and 1,2,4-triazole hybrids as antimicrobials and their SAR: A critical review. Eur J Med Chem 2023; 259:115603. [PMID: 37478558 DOI: 10.1016/j.ejmech.2023.115603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/23/2023]
Abstract
With the widespread use and sometimes even abuse of antibiotics, the problem of bacterial resistance to antibiotics has become very serious, and it is posing a great threat to global health. Therefore, development of new antibiotics is imperative. Triazoles are five-membered, nitrogen-containing aromatic heterocyclic scaffolds, with two isomeric forms, i.e. 1,2,3-triazole and 1,2,4-triazole. Triazole-containing compounds have a wide range of biological activities such as antibacterial, antifungal, anticancer, antioxidant, antitubercular, antimalarial, anti-HIV, anticonvulsant, anti-inflammatory, antiulcer, analgesic, and etc. The bioactivities and the diversity of triazole-containing drugs have attracted wide interest in these heterocycles. Various antibiotic triazole hybrids have been developed, and most of which have shown potent antimicrobial activities. In this review, we summarized the recent advances in triazole hybrids as potential antibacterial agents and their structure-activity relationships (SARs). The information gained through SAR studies will provide further insights into the development of new triazole antimicrobials.
Collapse
Affiliation(s)
- Guimiao Tian
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Qiuyi Song
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
3
|
Osmaniye D, Baltacı Bozkurt N, Levent S, Benli Yardımcı G, Sağlık BN, Ozkay Y, Kaplancıklı ZA. Synthesis, Antifungal Activities, Molecular Docking and Molecular Dynamic Studies of Novel Quinoxaline-Triazole Compounds. ACS OMEGA 2023; 8:24573-24585. [PMID: 37457491 PMCID: PMC10339406 DOI: 10.1021/acsomega.3c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Uncontrolled use of antifungal drugs affects the development of resistance to existing drugs. Azole antifungals constitute a large part of antifungal therapy. Therefore, there is a need for new azole antifungals. Within the scope of this study, 17 new triazole derivative compounds were synthesized. Structure determinations were clarified by spectroscopic analysis methods (1H-NMR, 13C-NMR, HRMS). In addition, structure matching was completed using two-dimensional NMR techniques, HSQC, HMBC and NOESY. The antifungal effects of the compounds were evaluated on Candida strains by means of in vitro method. Compound 5d showed activity against Candida glabrata with a MIC90 = 2 μg/mL. Compound 5d showed activity against Candida krusei with a MIC90 = 2 μg/mL. This activity value, which is higher than fluconazole, is promising. In addition, the biofilm inhibition percentages of the compounds were calculated. Molecular docking and molecular dynamics simulations performed with compound 5d are in harmony with activity studies.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Nurnehir Baltacı Bozkurt
- Department
of Pharmaceutical Microbiology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey
| | - Serkan Levent
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Gamze Benli Yardımcı
- Department
of Pharmaceutical Microbiology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey
| | - Begüm Nurpelin Sağlık
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Yusuf Ozkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
4
|
Qiu YG, Yang ZH, Sun XB, Jin DJ, Zheng YM, Li J, Gu W. Synthesis and Antifungal Activity of Novel L-Menthol Hydrazide Derivatives as Potential Laccase Inhibitors. Chem Biodivers 2023; 20:e202300539. [PMID: 37317940 DOI: 10.1002/cbdv.202300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/16/2023]
Abstract
To discover novel laccase inhibitors as potential fungicides, twenty-six novel L-menthol hydrazide derivatives were designed and synthesized. In the in vitro antifungal assay, most of the target compounds displayed pronounced antifungal activity against Sclerotinia sclerotiorum, Fusarium graminearum, and Botryosphaeria dothidea. Especially, the EC50 of compounds 3 b and 3 q against B. dothidea was 0.465 and 0.622 mg/L, which was close to the positive compound fluxapyroxad (EC50 =0.322 mg/L). Scanning electron microscopy (SEM) analysis showed that compound 3 b could significantly damage the mycelial morphology of B. dothidea. In vivo antifungal experiments on apple fruits showed that 3 b exhibited excellent protective and curative effects. Furthermore, in the in vitro laccase inhibition assay, 3 b showed outstanding inhibitory activity with the IC50 value of 2.08 μM, which is much stronger than positive control cysteine and PMDD-5Y. These results indicated that this class of L-menthol derivatives could be promising leads for the discovery of laccase-targeting fungicides.
Collapse
Affiliation(s)
- Yi-Gui Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Hui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xue-Bao Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Dao-Jun Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yi-Ming Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jia Li
- School of Foreign Languages, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
5
|
Synthesis, Antifungal Activity, 3D-QSAR and Controlled Release on Hydrotalcite Study of Longifolene-Derived Diphenyl Ether Carboxylic Acid Compounds. Molecules 2023; 28:molecules28041911. [PMID: 36838899 PMCID: PMC9968029 DOI: 10.3390/molecules28041911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Twenty-two novel longifolene-derived diphenyl ether-carboxylic acid compounds 7a-7v were synthesized from renewable biomass resources longifolene, and their structures were confirmed by FT-IR, 1H NMR, 13C NMR, and HRMS. The preliminary evaluation of in vitro antifungal activity displayed that compound 7b presented inhibition rates of 85.9%, 82.7%, 82.7%, and 81.4% against Alternaria solani, Cercospora arachidicola, Rhizoctonia solani, and Physalospora piricola, respectively, and compound 7l possessed inhibition rates of 80.7%, 80.4%, and 80.3% against R. solani, C. arachidicola, P. piricola, respectively, exhibiting excellent and broad-spectrum antifungal activities. Besides, compounds 7f and 7a showed significant antifungal activities with inhibition rates of 81.2% and 80.7% against A.solani, respectively. Meanwhile, a reasonable and effective 3D-QSAR mode (r2 = 0.996, q2 = 0.572) has been established by the CoMFA method. Furthermore, the drug-loading complexes 7b/MgAl-LDH were prepared and characterized. Their pH-responsive controlled-release behavior was investigated as well. As a result, complex 7b/MgAl-LDH-2 exhibited excellent controlled-releasing performance in the water/ethanol (10:1, v:v) and under a pH of 5.7.
Collapse
|
6
|
Li R, Cen B, Duan W, Lin G. Synthesis, Antifungal Activity and 3D-QSAR Study of Novel Anisaldehyde-Derived Amide-Thiourea Compounds. Chem Biodivers 2022; 19:e202101025. [PMID: 35213086 DOI: 10.1002/cbdv.202101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/24/2022] [Indexed: 11/12/2022]
Abstract
Succinate dehydrogenase (SDH) is an important target enzyme for designing agricultural chemical fungicides. In order to explore novel natural product-based antifungal agents, twenty-one unreported anisaldehyde-derived amide-thiourea compounds were designed and synthesized using the principle of active splicing, and structurally confirmed by 1 H-NMR, 13 C-NMR, ESI-MS, FT-IR, and element analysis. In vitro antifungal activity of the target compounds was evaluated by the agar dilution method. The results showed that some target compounds exhibited better or comparable antifungal activity than that of the commercial fungicide chlorothalonil, in which compounds 5c, 5o, and 5r displayed excellent antifungal activity of 92.6 %, 92.6 % and 99.1 % against P. piricola, respectively, better than that of the positive control. In addition, 3D-QSAR analysis was carried out by the CoMFA method to reveal the relationship between the structures of the target compounds and their inhibitory activities. The simulative binding mode of the target compounds and SDH was also studied by molecular docking.
Collapse
Affiliation(s)
- Rong Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Bo Cen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Guishan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| |
Collapse
|
7
|
Matsuzaka Y, Uesawa Y. A Deep Learning-Based Quantitative Structure-Activity Relationship System Construct Prediction Model of Agonist and Antagonist with High Performance. Int J Mol Sci 2022; 23:ijms23042141. [PMID: 35216254 PMCID: PMC8877122 DOI: 10.3390/ijms23042141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Molecular design and evaluation for drug development and chemical safety assessment have been advanced by quantitative structure–activity relationship (QSAR) using artificial intelligence techniques, such as deep learning (DL). Previously, we have reported the high performance of prediction models molecular initiation events (MIEs) on the adverse toxicological outcome using a DL-based QSAR method, called DeepSnap-DL. This method can extract feature values from images generated on a three-dimensional (3D)-chemical structure as a novel QSAR analytical system. However, there is room for improvement of this system’s time-consumption. Therefore, in this study, we constructed an improved DeepSnap-DL system by combining the processes of generating an image from a 3D-chemical structure, DL using the image as input data, and statistical calculation of prediction-performance. Consequently, we obtained that the three prediction models of agonists or antagonists of MIEs achieved high prediction-performance by optimizing the parameters of DeepSnap, such as the angle used in the depiction of the image of a 3D-chemical structure, data-split, and hyperparameters in DL. The improved DeepSnap-DL system will be a powerful tool for computer-aided molecular design as a novel QSAR system.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Japan;
- Center for Gene and Cell Therapy, Division of Molecular and Medical Genetics, The Institute of Medical Science, University of Tokyo, Minato City 108-8639, Japan
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Japan;
- Correspondence: ; Tel.: +81-42-495-8983
| |
Collapse
|