1
|
Gupta S, Jha S, Rani S, Arora P, Kumar S. Medicinal Perspective of 2,4-Thiazolidinediones Derivatives: An Insight into Recent Advancements. ChemistryOpen 2024; 13:e202400147. [PMID: 39246226 PMCID: PMC11564877 DOI: 10.1002/open.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Indexed: 09/10/2024] Open
Abstract
2,4-Thiazolidinedione derivatives represent nitrogen-containing heterocyclic compounds utilized in type 2 diabetes mellitus management. Recent advances in medicinal chemistry have unveiled diverse therapeutic potentials and structural modifications of these derivatives. This review delves into novel TZD derivatives, encompassing their synthesis, structure-activity relationships, and pharmacokinetic profiles. Various therapeutic potentials of TZDs are explored, including anticancer, antimicrobial, anti-inflammatory, antioxidant, anticonvulsant, antihyperlipidemic, anticorrosive, and antitubercular activities. Additionally, it addresses mitigating side effects associated with marketed TZD derivatives such as weight gain, oedema, fractures, and congestive heart failure in type 2 diabetes mellitus management. The review elaborates on in vivo, in vitro, and ex vivo studies supporting different biological activities, alongside predicting ADME and drug-likeness properties of TZDs. Computational studies are also integrated to elucidate binding modes and affinities of novel TZD derivatives. Furthermore, a plethora of novel TZD derivatives with varied and enhanced therapeutic potentials are presented, warranting further evaluation of their biological activities.
Collapse
Affiliation(s)
- Sneha Gupta
- School of Pharmaceutical SciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| | - Sumeet Jha
- School of Pharmaceutical SciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| | - Supriya Rani
- School of Pharmaceutical SciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| | - Pinky Arora
- School of bioengineering and biosciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| | - Shubham Kumar
- School of Pharmaceutical SciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| |
Collapse
|
2
|
Al-Wahaibi LH, Elbastawesy MAI, Abodya NE, Youssif BGM, Bräse S, Shabaan SN, Sayed GH, Anwer KE. New Pyrazole/Pyrimidine-Based Scaffolds as Inhibitors of Heat Shock Protein 90 Endowed with Apoptotic Anti-Breast Cancer Activity. Pharmaceuticals (Basel) 2024; 17:1284. [PMID: 39458925 PMCID: PMC11510237 DOI: 10.3390/ph17101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Supported by a comparative study between conventional, grinding, and microwave techniques, a mild and versatile method based on the [1 + 3] cycloaddition of 2-((3-nitrophenyl)diazenyl)malononitrile to tether pyrazole and pyrimidine derivatives in good yields was used. Methods: The newly synthesized compounds were analyzed with IR, 13C NMR, 1H NMR, mass, and elemental analysis methods. The products show interesting precursors for their antiproliferative anti-breast cancer activity. Results: Pyrimidine-containing scaffold compounds 9 and 10 were the most active, achieving IC50 = 26.07 and 4.72 µM against the breast cancer MCF-7 cell line, and 10.64 and 7.64 µM against breast cancer MDA-MB231-tested cell lines, respectively. Also, compounds 9 and 10 showed a remarkable inhibitory activity against the Hsp90 protein with IC50 values of 2.44 and 7.30 µM, respectively, in comparison to the reference novobiocin (IC50 = 1.14 µM). Moreover, there were possible apoptosis and cell cycle arrest in the G1 phase for both tested compounds (supported by CD1, caspase-3,8, BAX, and Bcl-2 studies). Also, the binding interactions of compound 9 were confirmed through molecular docking, and simulation studies displayed a complete overlay into the Hsp90 protein pocket. Conclusions: Compounds 9 and 10 may have apoptotic antiproliferative action as Hsp90 inhibitors.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohammed A. I. Elbastawesy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Nader E. Abodya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Sara N. Shabaan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt;
| | - Galal H. Sayed
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt; (G.H.S.); (K.E.A.)
| | - Kurls E. Anwer
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt; (G.H.S.); (K.E.A.)
| |
Collapse
|
3
|
Drakontaeidi A, Papanotas I, Pontiki E. Multitarget Pharmacology of Sulfur-Nitrogen Heterocycles: Anticancer and Antioxidant Perspectives. Antioxidants (Basel) 2024; 13:898. [PMID: 39199144 PMCID: PMC11351258 DOI: 10.3390/antiox13080898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer and oxidative stress are interrelated, with reactive oxygen species (ROS) playing crucial roles in physiological processes and oncogenesis. Excessive ROS levels can induce DNA damage, leading to cancer, and disrupt antioxidant defenses, contributing to diseases like diabetes and cardiovascular disorders. Antioxidant mechanisms include enzymes and small molecules that mitigate ROS damage. However, cancer cells often exploit oxidative conditions to evade apoptosis and promote tumor growth. Antioxidant therapy has shown mixed results, with timing and cancer-type influencing outcomes. Multifunctional drugs targeting multiple pathways offer a promising approach, reducing side effects and improving efficacy. Recent research focuses on sulfur-nitrogen heterocyclic derivatives for their dual antioxidant and anticancer properties, potentially enhancing therapeutic efficacy in oncology. The newly synthesized compounds often do not demonstrate both antioxidant and anticancer properties simultaneously. Heterocyclic rings are typically combined with phenyl groups, where hydroxy substitutions enhance antioxidant activity. On the other hand, electron-withdrawing substituents, particularly at the p-position on the phenyl ring, tend to enhance anticancer activity.
Collapse
Affiliation(s)
| | | | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.D.); (I.P.)
| |
Collapse
|
4
|
Kaur K, Verma H, Gangwar P, Dhiman M, Jaitak V. Design, synthesis, in vitro and in silico evaluation of indole-based tetrazole derivatives as putative anti-breast cancer agents. RSC Med Chem 2024; 15:1329-1347. [PMID: 38665833 PMCID: PMC11042173 DOI: 10.1039/d3md00730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/28/2024] Open
Abstract
A series of new indole-tetrazole derivatives were designed and synthesized to develop potential anti-breast cancer agents. The compounds exhibited in vitro anti-proliferative activity against ER-α positive T-47D (IC50 = 3.82-24.43 μM), MCF-7 (IC50 = 3.08-22.65 μM), and ER-α negative MDA-MB-231 (IC50 = 7.69-19.4 μM) human breast cancer cell lines. Compounds 5d and 5f displayed significant anti-proliferative activity compared to bazedoxifene (IC50 = 14.23 ± 0.68 μM), with IC50 values of 10.00 ± 0.59 and 3.83 ± 0.74 μM, respectively, against the ER-α dominant T-47D cell line. Also, both compounds showed non-significant cytotoxicity against normal cells HEK-293. Further, the ER-α binding affinity of 5d and 5f was assessed through a fluorescence polarization-based competitive binding assay, where 5d and 5f have shown significant binding with IC50 = 5.826 and 110.6 nM, respectively, as compared to the standard drug bazedoxifene (IC50 = 339.2 nM). Western blot analysis confirmed that compound 5d reduced ER-α protein expression in T-47D cells, hindering its transactivation and signalling pathways. Additionally, a molecular docking study suggests that compounds 5d and 5f bind in such a fashion that induces conformational changes in the protein, culminating in their antagonistic effect. Pharmacokinetic profiles showed that the compounds possessed drug-like properties. Furthermore, molecular dynamics simulation studies establish the dynamic stability and conformational behaviour of the ER-α protein and ligand complex of both compounds. Additionally, 5d and 5f ensure biological feasibility as per their DFT analysis through HOMO-LUMO energy gap analysis. In conclusion, compounds 5d and 5f, exhibiting significant ER-α antagonistic activity, can act as potential lead compounds for anti-breast cancer therapies.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| | - Harkomal Verma
- Department of Zoology, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| | - Prabhakar Gangwar
- Department of Zoology, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| | - Monisha Dhiman
- Department of Microbiology, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| |
Collapse
|
5
|
Ibrahim NSM, Kadry HH, Zaher AF, Mohamed KO. Synthesis of novel pyrimido[4,5-b]quinoline derivatives as dual EGFR/HER2 inhibitors as anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2300513. [PMID: 38148301 DOI: 10.1002/ardp.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
A series of novel N-aryl-5-aryl-6,7,8,9-tetrahydropyrimido[4,5-b]quinolin-4-amines 4a-4l was synthesized as potential anticancer agents through Dimroth rearrangement reaction of intermediates 3a-3c. Pyrimido[4,5-b]quinolines 4a-4l showed promising activity against the Michigan Cancer Foundation-7 (MCF-7) cell line, compared with lapatinib as the reference drug. Compounds 4d, 4h, 4i, and 4l demonstrated higher cytotoxic activity than lapatinib, with IC50 values of 2.67, 6.82, 4.31, and 1.62 µM, respectively. Compounds 4d, 4i, and 4l showed promising epidermal growth factor receptor (EGFR) inhibition with IC50 values of 0.065, 0.116, and 0.052 µM, respectively. These compounds were subjected to human epidermal growth factor receptor 2 (HER2) inhibition and showed IC50 values of 0.09, 0.164, and 0.055 µM, respectively. Compounds 4d, 4i, and 4l are good candidates as dual EGFR/HER2 inhibitors. The most active compound, 4l, was subjected to cell-cycle analysis and induced cell-cycle arrest at the S phase. Compound 4l induced apoptosis 60-fold compared with control untreated MCF-7 cells. 4l can inhibit cancer metastasis. It reduced MCF-7 cell infiltration and metastasis by 45% compared with control untreated cells.
Collapse
Affiliation(s)
- Nahla Said M Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan H Kadry
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ashraf F Zaher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khaled O Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Arish Branch, Arish, Egypt
| |
Collapse
|
6
|
Biswas T, Mittal RK, Sharma V, Kanupriya, Mishra I. Nitrogen-fused Heterocycles: Empowering Anticancer Drug Discovery. Med Chem 2024; 20:369-384. [PMID: 38192143 DOI: 10.2174/0115734064278334231211054053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 01/10/2024]
Abstract
The worldwide impact of cancer is further compounded by the constraints of current anticancer medications, which frequently exhibit a lack of selectivity, raise safety apprehensions, result in significant adverse reactions, and encounter resistance mechanisms. The current situation highlights the pressing need to develop novel and more precise anticancer agents that prioritize safety and target specificity. Remarkably, more than 85% of drugs with physiological activity contain heterocyclic structures or at least one heteroatom. Nitrogen-containing heterocycles hold a significant position among these compounds, emerging as the most prevalent framework within the realm of heterocyclic chemistry. This article explores the medicinal chemistry behind these molecules, highlighting their potential as game-changing possibilities for anticancer medication development. The analysis highlights the inherent structural variety in nitrogen-containing heterocycles, revealing their potential to be customized for creating personalized anticancer medications. It also emphasizes the importance of computational techniques and studies on the relationships between structure and activity, providing a road map for rational medication design and optimization. Nitrogen- containing heterocycles are a promising new area of study in the fight against cancer, and this review summarises the state of the field so far. By utilizing their inherent characteristics and exploiting cooperative scientific investigations, these heterocyclic substances exhibit potential at the forefront of pioneering therapeutic approaches in combating the multifaceted obstacles posed by cancer.
Collapse
Affiliation(s)
- Tanya Biswas
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Ravi Kumar Mittal
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Vikram Sharma
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Kanupriya
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Isha Mishra
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
7
|
Ibrahim NSM, Kadry HH, Zaher AF, Mohamed KO. Synthesis of novel pyrimido[4,5-b]quinolines as potential anticancer agents and HER2 inhibitors. Chem Biol Drug Des 2023; 102:996-1013. [PMID: 37527951 DOI: 10.1111/cbdd.14307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
A series of N-arylpyrimido[4,5-b]quinolines 3a-e and 2-aryl-2,3-dihydropyrimido[4,5-b]quinoline-4(1H)-ones 5a-e was designed and synthesized as potential anticancer agents against breast cancer. Compounds 3e, 5a, 5b, 5d, and 5e showed promising activity against the MCF-7 cell line. Among them, compound 5b was the most active with IC50 of 1.67 μM. Compound 5b promoted apoptosis and induced cell cycle arrest at S phase. 5b increased the level of pro-apoptotic proteins p53, Bax, and caspase-7 and inhibited the anti-apoptotic protein Bcl-2. Furthermore, all the synthesized compounds were docked into the crystal structure of HER2 (PBD: 3 pp0). Compounds 3e, 5a, 5b, 5d, and 5e showed good energy scores and binding modes. Finally, Compound 5b was evaluated on the HER2 assay and revealed good inhibition with IC50 of 0.073 μM.
Collapse
Affiliation(s)
- Nahla Said M Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan H Kadry
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ashraf F Zaher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khaled O Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Saah SA, Sakyi PO, Adu-Poku D, Boadi NO, Djan G, Amponsah D, Devine RNOA, Ayittey K. Docking and Molecular Dynamics Identify Leads against 5 Alpha Reductase 2 for Benign Prostate Hyperplasia Treatment. J CHEM-NY 2023. [DOI: 10.1155/2023/8880213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Steroid 5 alpha-reductase 2 (5αR-2) is a membrane-embedded protein that together with other isoforms plays a key role in the metabolism of steroids. This enzyme catalyzes the reduction of testosterone to the more potent ligand, dihydrotestosterone (DHT) in the prostate. Androgens, testosterone, and DHT play important roles in prostate growth, development, and function. At the same time, both testosterone and DHT have been implicated in the pathogenesis of benign prostate hyperplasia (BPH). Inhibition of the DHT formation, therefore, provides a therapeutic strategy that offers the possibility of preventing, delaying, or treating BPH. Currently, two steroidal drugs that inhibit 5αR-2, dutasteride and finasteride, have been approved for clinical use. These two come at a high cost and also portray undesirable sexual side effects which necessitate the need to find new chemotherapeutic alternatives for the disease. Based on the aforementioned, finasteride and dutasteride were subjected to scaffold hopping, fragment-based de novo design, molecular docking, and molecular dynamics simulations employing databases like ChEMBL, DrugBank, PubChem, ChemSpider, and Zinc15 in the identification of potential hits targeting 5αR-2. Altogether, ten novel compounds targeting 5αR-2 were identified with binding energies lower or comparable to finasteride and dutasteride, the main inhibitors for this target. Molecular docking and molecular dynamics simulations studies identify amino acid residues Glu57, Phe219, Phe223, and Leu224 to be critical for ligand binding and complex stability. The physicochemical and pharmacological profiling suggests the potential of the hit compounds to be drug-like and orally active. Similarly, the quality parameter assessments revealed the hits possess LELP greater than 3 implying their promise as lead-like molecules. The compounds A5, A9, and A10 were, respectively, predicted to treat prostate disorders with Pa (0.188, 0.361, and 0.270) and Pi (0.176, 0.050, and 0.093), while A8 and A9 were found to be associated with BPH treatment with Pa (0.09 and 0.127) and Pi (0.077 and 0.033), respectively. Structural similarity searches via DrugBank identified the drugs faropenem, acemetacin, estradiol valerate, and yohimbine to be useful for BPH treatment suggesting the de novo designed ligands as potential chemotherapeutic agents for treating this disease.
Collapse
|
9
|
Akhter N, Batool S, Khan SG, Rasool N, Anjum F, Rasul A, Adem Ş, Mahmood S, Rehman AU, Nisa MU, Razzaq Z, Christensen JB, Abourehab MAS, Shah SAA, Imran S. Bio-Oriented Synthesis and Molecular Docking Studies of 1,2,4-Triazole Based Derivatives as Potential Anti-Cancer Agents against HepG2 Cell Line. Pharmaceuticals (Basel) 2023; 16:211. [PMID: 37259360 PMCID: PMC9964635 DOI: 10.3390/ph16020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 08/22/2023] Open
Abstract
Triazole-based acetamides serve as important scaffolds for various pharmacologically active drugs. In the present work, structural hybrids of 1,2,4-triazole and acetamides were furnished by chemically modifying 2-(4-isobutylphenyl) propanoic acid (1). Target compounds 7a-f were produced in considerable yields (70-76%) by coupling the triazole of compound 1 with different electrophiles under different reaction conditions. These triazole-coupled acetamide derivatives were verified by physiochemical and spectroscopic (HRMS, FTIR, 13CNMR, and 1HNMR,) methods. The anti-liver carcinoma effects of all of the derivatives against a HepG2 cell line were investigated. Compound 7f, with two methyl moieties at the ortho-position, exhibited the highest anti-proliferative activity among all of the compounds with an IC50 value of 16.782 µg/mL. 7f, the most effective anti-cancer molecule, also had a very low toxicity of 1.190.02%. Molecular docking demonstrates that all of the compounds, especially 7f, have exhibited excellent binding affinities of -176.749 kcal/mol and -170.066 kcal/mol to c-kit tyrosine kinase and protein kinase B, respectively. Compound 7f is recognized as the most suitable drug pharmacophore for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Naheed Akhter
- Department of Biochemistry, Faculty of Life Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sidra Batool
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, 18100 Çankırı, Turkey
| | - Sadaf Mahmood
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Aziz ur Rehman
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Mehr un Nisa
- Department of Chemistry, University of Lahore, Lahore 40100, Pakistan
| | - Zainib Razzaq
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Jørn B. Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Shah Alam 40450, Selangor D.E., Malaysia
| |
Collapse
|
10
|
Alshamrani M. Recent advances and therapeutic journey of pyridine-based Cu(II) complexes as potent anticancer agents: a review (2015–2022). J COORD CHEM 2023. [DOI: 10.1080/00958972.2022.2164190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
11
|
Sakyi PO, Broni E, Amewu RK, Miller WA, Wilson MD, Kwofie SK. Targeting Leishmania donovani sterol methyltransferase for leads using pharmacophore modeling and computational molecular mechanics studies. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
12
|
Ahmad Mir S, Paramita Mohanta P, Kumar Meher R, baitharu I, Kumar Raval M, Kumar Behera A, Nayak B. Structural insights into conformational stability and binding of thiazolo-[2,3-b] quinazolinone derivatives with EGFR-TKD and in-vitro study. Saudi J Biol Sci 2022; 29:103478. [PMID: 36389208 PMCID: PMC9646979 DOI: 10.1016/j.sjbs.2022.103478] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Heterocyclic molecules are well-known drugs against various diseases including cancer. Many tyrosine kinase inhibitors including erlotinib, osimertinib, and sunitinib were developed and approved but caused adverse effects among treated patients. Which prevents them from being used as cancer therapeutics. In this study, we strategically developed heterocyclic thiazolo-[2,3-b]quinazolinone derivatives by an organic synthesis approach. These synthesized molecules were assessed against the epidermal growth factor receptor tyrosine kinase domain (EGFR-TKD) by in silico methods. Molecular docking simulations unravel derivative 17 showed better binding energy scores and followed Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties. The binding affinity displayed by synthetic congener and reference molecule erlotinib was found to be -8.26 ± 0.0033 kcal/mol and -7.54 ± 0.1411 kcal/mol with the kinase domain. Further, molecular dynamic simulations were conducted thrice to validate the molecular docking study and achieved significant results. Both synthetic derivative and reference molecule attained stability in the active site of the TKD. The synthetic congener and erlotinib showed free energy binding (ΔGbind) -102.975 ± 3.714 kJ/mol and -130.378 ± 0.355 kJ/mol computed by Molecular Mechanics Poison Boltzmann Surface Area (MM-PBSA) method. In addition, the motions of each sampled system including the Apo complex were determined by the principal component analysis and Gibbs energy landscape analysis. The in-vitro apoptosis study was performed using MCF-7 and H-1299 cancer cell lines. However, thiazolo-[2,3-]-quinazoline derivative 17 showed fair anti-proliferative activity against MCF-7 and H-1299. Further, the in-vivo study is necessary to determine the effectivity of the potent anti-proliferative, non-toxic molecule against TKD.
Collapse
Affiliation(s)
- Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyoti Vihar-768019, Odisha, India
| | | | - Rajesh Kumar Meher
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar-768019, Odisha, India
| | - Iswar baitharu
- Department of Environmental Sciences Sambalpur University, Jyoti Vihar-768019, Odisha, India
| | - Mukesh Kumar Raval
- Department of Chemistry, Gangadhar Meher University, Sambalpur-768019, Odisha, India
| | - Ajaya Kumar Behera
- Department of Chemistry, Sambalpur University, Jyoti Vihar-768019, Odisha, India
| | - Binata Nayak
- School of Life Sciences, Sambalpur University, Jyoti Vihar-768019, Odisha, India
| |
Collapse
|
13
|
Multistep synthesis and screening of heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) as antimicrobial and anticancer agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101447] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|