1
|
Development of organic-inorganic hybrid antimicrobial materials by mechanical force and application for active packaging. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
2
|
Patiño Vidal C, Luzi F, Puglia D, López-Carballo G, Rojas A, Galotto MJ, López de Dicastillo C. Development of a sustainable and antibacterial food packaging material based in a biopolymeric multilayer system composed by polylactic acid, chitosan, cellulose nanocrystals and ethyl lauroyl arginate. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Muñoz-Shugulí C, Rodríguez-Mercado F, Benbettaieb N, Guarda A, Galotto MJ, Debeaufort F. Development and Evaluation of the Properties of Active Films for High-Fat Fruit and Vegetable Packaging. Molecules 2023; 28:molecules28073045. [PMID: 37049807 PMCID: PMC10096072 DOI: 10.3390/molecules28073045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
β-cyclodextrin and allyl isothiocyanate inclusion complexes (β-CD:AITC) have been proposed for developing fresh fruit and vegetable packaging materials. Therefore, the aim of this research was to develop active materials based on poly(lactic acid) (PLA) loaded with β-CD:AITC and to assess changes in the material properties during the release of AITC to food simulants. PLA films with 0, 5 and 10 wt.% β-CD:AITC were developed by extrusion. Surface properties were determined from contact angle measurements. Films were immersed in water, aqueous and fatty simulants to assess the absorption capacity and the change in the thermal properties. Moreover, the release of AITC in both simulants was evaluated by UV-spectroscopy and kinetic parameters were determined by data modeling. Results showed that a higher concentration of β-CD:AITC increased the absorption of aqueous simulant of films, favoring the plasticization of PLA. However, the incorporation of β-CD:AITC also avoided the swelling of PLA in fatty simulant. These effects and complex relationships between the polymer, inclusion complexes and food simulant explained the non-systematic behavior in the diffusion coefficient. However, the lower partition coefficient and higher percentage of released AITC to the fatty simulant suggested the potential of these materials for high-fat fruit and vegetable active packaging applications.
Collapse
|
4
|
Synthesis of p-methoxybenzaldehyde/β-cyclodextrin inclusion complex and studies of its release properties in polylactic acid film. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Shao L, Xi Y, Weng Y. Recent Advances in PLA-Based Antibacterial Food Packaging and Its Applications. Molecules 2022; 27:molecules27185953. [PMID: 36144687 PMCID: PMC9502505 DOI: 10.3390/molecules27185953] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
In order to reduce environmental pollution and resource waste, food packaging materials should not only have good biodegradable ability but also effective antibacterial properties. Poly(lactic acid) (PLA) is the most commonly used biopolymer for food packaging applications. PLA has good physical properties, mechanical properties, biodegradability, and cell compatibility but does not have inherent antibacterial properties. Therefore, antibacterial packaging materials based on PLA need to add antibacterial agents to the polymer matrix. Natural antibacterial agents are widely used in food packaging materials due to their low toxicity. The high volatility of natural antibacterial agents restricts their application in food packaging materials. Therefore, appropriate processing methods are particularly important. This review introduces PLA-based natural antibacterial food packaging, and the composition and application of natural antibacterial agents are discussed. The properties of natural antibacterial agents, the technology of binding with the matrix, and the effect of inhibiting various bacteria are summarized.
Collapse
Affiliation(s)
- Linying Shao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuewei Xi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| |
Collapse
|
6
|
Chen J, Li Y, Wang Y, Yakubu S, Tang H, Li L. Active polylactic acid/tilapia fish gelatin-sodium alginate bilayer films: Application in preservation of Japanese sea bass (Lateolabrax japonicus). Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Zheng H, Tang H, Yang C, Chen J, Wang L, Dong Q, Shi W, Li L, Liu Y. Evaluation of the slow-release polylactic acid/polyhydroxyalkanoates active film containing oregano essential oil on the quality and flavor of chilled pufferfish (Takifugu obscurus) fillets. Food Chem 2022; 385:132693. [PMID: 35303650 DOI: 10.1016/j.foodchem.2022.132693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022]
Abstract
Active packaging is an innovative and effective way to extend the shelf life of food, but few studies have focused on the effect of its active ingredients on food flavor. This study aimed to develop slow-release polylactic acid/polyhydroxyalkanoates (PLA/PHA) active packaging containing oregano essential oil (OEO) and investigate the effect of active composite packaging on the flavor and quality of pufferfish fillets. The plasticizing effect of OEO increased the elongation at break (EAB) of the films from 23.36% to 65.80%. The adsorption of montmorillonite (MMT) reduces the loss of OEO during processing. The amount of active substance (carvacrol) released from PLA/PHA/OEO/MMT film to pufferfish was 9.70 mg/kg. The pufferfish fillets packed in PLA/PHA/OEO/MMT film showed the slightest difference on the 8th day from the beginning of storage. The slow-release composite films could extend the shelf life of pufferfish fillets by 2-3 days at 4 °C ± 1 °C.
Collapse
Affiliation(s)
- Hui Zheng
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Haibing Tang
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Chunxiang Yang
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Jingwen Chen
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Li Wang
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Qingfeng Dong
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Wenzheng Shi
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Li Li
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China.
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|