1
|
Gorrepati K, Krishna R, Singh S, Shirsat DV, Soumia P, Mahajan V. Harnessing the nutraceutical and therapeutic potential of Allium spp.: current insights and future directions. Front Nutr 2024; 11:1497953. [PMID: 39610875 PMCID: PMC11602312 DOI: 10.3389/fnut.2024.1497953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Apart from the culinary usage, Alliums are known for their therapeutic potential since antiquity. Alliums contain diverse bioactive compounds such as, sulfur-containing compounds (allicin, diallyl sulfides), flavonoids, and saponins. These compounds have demonstrated a wide range of pharmacological actions, including antioxidant, anticancer, anti-inflammatory, antimicrobial, neuroprotective, cardioprotective activities and treatment of metabolic disorders such as diabetes and hyperlipidemia. Despite encouraging preclinical results, translating these findings into clinical practice remains difficult, necessitating more rigorous human trials and molecular research. One of the major constrain in enhancing the therapeutic efficacy of these bioactive compound is to develop large-scale extraction techniques besides improving their stability, solubility, and bioavailability. The current scenario urges to focus research on optimizing the bioavailability of these compounds, evaluate their synergistic effects with existing therapies, as well as their long-term safety. This perspective article provides a comprehensive overview of the therapeutic potential of Allium spp. and suggests the key avenues for future research aiming at realising their full clinical potential.
Collapse
Affiliation(s)
- Kalyani Gorrepati
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Ram Krishna
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Saurabh Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | | | - P.S. Soumia
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Vijay Mahajan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| |
Collapse
|
2
|
Barbu IA, Toma VA, Moț AC, Vlase AM, Butiuc-Keul A, Pârvu M. Chemical Composition and Antioxidant Activity of Six Allium Extracts Using Protein-Based Biomimetic Methods. Antioxidants (Basel) 2024; 13:1182. [PMID: 39456436 PMCID: PMC11504208 DOI: 10.3390/antiox13101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Medicinal plants are a valuable reservoir of novel pharmacologically active compounds. ROS and free radicals are primary contributors to oxidative stress, a condition associated with the onset of degenerative diseases such as cancer, coronary heart disease, and vascular disease. In this study, we used different spectrophotometry methods to demonstrate the antioxidant properties of 6 Allium extracts: Allium fistulosum; Allium ursinum; Allium cepa: Arieș red cultivar of A. cepa, and white variety of A. cepa; Allium sativum; and Allium senescens subsp. montanum. HPLC-MS determined the chemical composition of the extracts. Among the tested extracts, the Arieș red cultivar of A. cepa stands out as having the best antioxidant activity, probably due to the high content of polyphenols and alliin (12.67 µg/mL and 3565 ng/mL, respectively). The results obtained in this study show that Allium extracts have antioxidant activity, but also free radical scavenging capabilities. Also, their interactions with cytochrome c and hemoglobin can be the basis of future studies to create treatments for oxidative stress-related diseases.
Collapse
Affiliation(s)
- Ioana Andreea Barbu
- Faculty of Biology and Geology, Babeș-Bolyai University, 1, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (I.A.B.); (A.B.-K.); (M.P.)
- Doctoral School of Integrative Biology, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania
- Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Vlad Alexandru Toma
- Faculty of Biology and Geology, Babeș-Bolyai University, 1, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (I.A.B.); (A.B.-K.); (M.P.)
- Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., 400015 Cluj-Napoca, Romania
- “Maya and Nicolae Simionescu”, Romanian Society for Cell Biology, 050568 Bucharest, Romania
| | - Augustin Cătălin Moț
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Anca Butiuc-Keul
- Faculty of Biology and Geology, Babeș-Bolyai University, 1, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (I.A.B.); (A.B.-K.); (M.P.)
- Doctoral School of Integrative Biology, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania
- Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Marcel Pârvu
- Faculty of Biology and Geology, Babeș-Bolyai University, 1, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (I.A.B.); (A.B.-K.); (M.P.)
- Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Iwar K, Ochar K, Seo YA, Ha BK, Kim SH. Alliums as Potential Antioxidants and Anticancer Agents. Int J Mol Sci 2024; 25:8079. [PMID: 39125648 PMCID: PMC11312234 DOI: 10.3390/ijms25158079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024] Open
Abstract
The genus Allium plants, including onions, garlic, leeks, chives, and shallots, have long been recognized for their potential health benefits, particularly in oxidative and cancer prevention. Among them, onions and garlic have been extensively studied, unveiling promising biological activities that are indicative of their potential as potent antioxidant and anticancer agents. Research has revealed a rich repository of bioactive compounds in Allium species, highlighting their antioxidative properties and diverse mechanisms that target cancer cells. Compounds such as allicin, flavonoids, and organosulfur compounds (OSCs) exhibit notable antioxidant and anticancer properties, affecting apoptosis induction, cell cycle arrest, and the inhibition of tumor proliferation. Moreover, their antioxidant and anti-inflammatory attributes enhance their potential in cancer therapy. Studies exploring other Allium species beyond onions and garlic have revealed similar biological activities, suggesting a broad spectrum of natural products that could serve as promising candidates for developing novel anticancer treatments. Understanding the multifaceted potential of Allium plants will pave the way for innovative strategies in oxidative and cancer treatment and prevention, offering new avenues for pharmaceutical research and dietary interventions. Therefore, in this review, we compile an extensive analysis of the diversity of various Allium species, emphasizing their remarkable potential as effective agents.
Collapse
Affiliation(s)
- Kanivalan Iwar
- National Agrobiodiversity Centre, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.I.); (K.O.)
| | - Kingsley Ochar
- National Agrobiodiversity Centre, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.I.); (K.O.)
- Council for Scientific and Industrial Research, Plant Genetic Resources Institute, Bunso P.O. Box 7, Ghana
| | - Yun Am Seo
- Department of Data Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Centre, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.I.); (K.O.)
| |
Collapse
|
4
|
Lestari SR, Gofur A, Hartatiek D, Annisa Y, Ramadhani DN, Rahma AN, Aisyah DN, Mufidah IN, Rifqi ND. Characterization and In-vitro Study of Micro-encapsulation Chitosan Alginate of Single-bulb Garlic Extract. Pharm Nanotechnol 2024; 12:155-164. [PMID: 37287295 DOI: 10.2174/2211738511666230607121118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Single-bulb garlic extract (SBGE) contains more active compounds than regular garlic, but it is unstable and easily degraded in the digestive tract. SBGE is expected to be protected by microencapsulation chitosan-alginate (MCA). OBJECTIVE The present study aimed to characterize and assess the antioxidant activity, hemocompatibility, and toxicity of MCA-SBGE in 3T3-L1 cells. METHODS The research procedures consist of extraction of single bulb garlic, preparation of MCASBGE, Particle Size Analyzer (PSA), FTIR analysis, DPPH assay, hemocompatibility test, and MTT assay. RESULTS The average size of MCA-SGBE was 423.7 ± 2.8 nm, the polydispersity index (PdI) was 0.446 ± 0.022, and the zeta potential was -24.5 ± 0.4 mV. MCA-SGBE was spherical with a diameter range of 0.65-0.9 μm. A shift in absorption and addition of functional groups was found in SBGE after encapsulation. MCA-SBGE, at a concentration of 24 x 103 ppm, has higher antioxidants than SBGE. The hemocompatibility test shows the hemolysis of MCA-SBGE lower than SBGE. MCA-SBGE was not toxic to 3T3-L1 cells with cell viability percentage above 100% at all concentrations. CONCLUSION MCA-SBGE characterization has microparticle criteria with homogeneous PdI values, low particle stability, and spherical morphology. The results showed that SBGE and MCA-SBGE are nonhemolytic, compatible with red blood cells, and non-toxic to 3T3-L1 cells.
Collapse
Affiliation(s)
- Sri Rahayu Lestari
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Abdul Gofur
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Dra Hartatiek
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Yuslinda Annisa
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, 65145, Malang, East Java, Indonesia
| | - Dimas Nur Ramadhani
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Amalia Nur Rahma
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Dahniar Nur Aisyah
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Ikfi Nihayatul Mufidah
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| | - Nadiya Dini Rifqi
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, 65145, Malang, East Java, Indonesia
| |
Collapse
|
5
|
Kim SH, Yoon JB, Han J, Seo YA, Kang BH, Lee J, Ochar K. Green Onion ( Allium fistulosum): An Aromatic Vegetable Crop Esteemed for Food, Nutritional and Therapeutic Significance. Foods 2023; 12:4503. [PMID: 38137307 PMCID: PMC10742967 DOI: 10.3390/foods12244503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, there has been a shift towards a greater demand for more nutritious and healthier foods, emphasizing the role of diets in human well-being. Edible Alliums, including common onions, garlic, chives and green onions, are staples in diverse cuisines worldwide and are valued specifically for their culinary versatility, distinct flavors and nutritional and medicinal properties. Green onions are widely cultivated and traded as a spicy vegetable. The mild, onion-like flavor makes the crop a pleasant addition to various dishes, serving as a staple ingredient in many world cuisines, particularly in Eastern Asian countries such as China, Japan and the Republic of Korea. The green pseudostems, leaves and non-developed bulbs of green onions are utilized in salads, stir-fries, garnishes and a myriad of culinary preparations. Additionally, green onions have a rich historical background in traditional medicine and diets, capturing the attention of chefs and the general public. The status of the crop as an important food, its culinary diversity and its nutraceutical and therapeutic value make it a subject of great interest in research. Therefore, the present review has examined the distribution, culinary, nutritional and therapeutic significance of green onions, highlighting the health benefits derived from the consumption of diets with this aromatic vegetable crop as a constituent.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
| | - Jung Beom Yoon
- National Institute of Horticultural and Herbal Science, RDA, Wanju 55365, Republic of Korea;
| | - Jiwon Han
- National Institute of Horticultural and Herbal Science, RDA, Muan 58545, Republic of Korea;
| | - Yum Am Seo
- Department of Data Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Byeong-Hee Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jaesu Lee
- Korea Partnership for Innovation of Agriculture, RDA, Jeonju 54875, Republic of Korea;
| | - Kingsley Ochar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana
| |
Collapse
|
6
|
Aquino G, Basilicata MG, Crescenzi C, Vestuto V, Salviati E, Cerrato M, Ciaglia T, Sansone F, Pepe G, Campiglia P. Optimization of microwave-assisted extraction of antioxidant compounds from spring onion leaves using Box-Behnken design. Sci Rep 2023; 13:14923. [PMID: 37691048 PMCID: PMC10493223 DOI: 10.1038/s41598-023-42303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
Many studies have explored the extraction of bioactive compounds from different onion solid wastes, such as bulb, skin, and peel. However, onion leaves have received limited attention despite their potential as a valuable source of nutraceutical compounds. This study aimed to valorise, for the first time, the agricultural waste in the form of spring onion leaves (CN, Cipollotto Nocerino) to obtain antioxidant-rich polyphenolic extracts. A Box-Behnken design (BBD) was used to assess the impact of microwave-assisted extraction (MAE) variables (temperature, time, extraction volume, and ethanol concentration) on total polyphenol content (TPC) measured by Folin-Ciocalteu method and the antioxidant power determined by FRAP assay. Response surface methodology (RSM) was applied, and regression equations, analysis of variance, and 3D response curves were developed. Our results highlighted that the TPC values range from 0.76 to 1.43 mg GAE g-1 dw, while the FRAP values range from 8.25 to 14.80 mmol Fe(II)E g-1 dw. The optimal extraction conditions predicted by the model were 60 °C, 22 min, ethanol concentration 51% (v/v), and solvent volume 11 mL. These conditions resulted in TPC and FRAP values of 1.35 mg GAE g-1 dw and 14.02 mmol Fe(II)E g-1 dw, respectively. Furthermore, the extract obtained under optimized conditions was characterized by UHPLC-ESI-Orbitrap-MS analysis. LC/MS-MS platform allowed us to tentatively identify various compounds belonging to the class of flavonoids, saponins, fatty acids, and lipids. Finally, the ability of CN optimal extract to inhibit the intracellular reactive oxygen species (ROS) release in a hepatocarcinoma cell line using an H2O2-induced oxidative stress model, was evaluated. The results highlighted the potential of CN extract as a valuable source of polyphenols with significant antioxidant properties, suitable for various applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Giovanna Aquino
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | | | - Carlo Crescenzi
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Michele Cerrato
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Francesca Sansone
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| |
Collapse
|
7
|
Xie T, Wu Q, Lu H, Hu Z, Luo Y, Chu Z, Luo F. Functional Perspective of Leeks: Active Components, Health Benefits and Action Mechanisms. Foods 2023; 12:3225. [PMID: 37685158 PMCID: PMC10486880 DOI: 10.3390/foods12173225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Leek (Allium fistulosum L.), a common and widely used food ingredient, is a traditional medicine used in Asia to treat a variety of diseases. Leeks contain a variety of bioactive substances, including sulfur compounds, dietary fiber, steroid compounds and flavonoid compounds. Many studies have shown that these active ingredients produce the following effects: promotion of blood circulation, lowering of cholesterol, relief of fatigue, anti-inflammation, anti-bacteria, regulation of cell metabolism, anti-cancer, anti-oxidation, and the lowering of fat and blood sugar levels. In this paper, the main bioactive components and biological functions of leeks were systemically reviewed, and the action mechanisms of bioactive components were discussed. As a common food, the health benefits of leeks are not well known, and there is no systematic summary of leek investigations. In light of this, it is valuable to review the recent progress and provide reference to investigators in the field, which will promote future applications and investigations of leeks.
Collapse
Affiliation(s)
- Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Han Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Yi Luo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhongxing Chu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
8
|
Gao D, Chen H, Li H, Yang X, Guo X, Zhang Y, Ma J, Yang J, Ma S. Extraction, structural characterization, and antioxidant activity of polysaccharides derived from Arctium lappa L. Front Nutr 2023; 10:1149137. [PMID: 37025610 PMCID: PMC10070700 DOI: 10.3389/fnut.2023.1149137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Arctium lappa L. root has high nutritional and medicinal values and has been identified as a healthy food raw material by the Ministry of Health of the People's Republic of China. Methods In the present study, an aqueous two-phase system (ATPS) of polyethylene glycol (PEG)-(NH4)2SO4 was used to extract Arctium lappa L. polysaccharides (ALPs) from the Arctium lappa L. roots, the optimal extraction conditions of crude ALPs were optimized by using the single-factor experiment and response surface methodology. The structure and composition of ALPs were determined by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high-performance liquid chromatography (HPLC). At the same time, the antioxidant activity of ALPs was investigated by in vitro antioxidant experiment. Results The optimized extraction parameters for extraction ALPs were as follows: the PEG relative molecular weight of 6,000, a quality fraction of PEG 25%, a quality fraction of (NH4)2SO4 18%, and an extraction temperature of 80°C. Under these conditions, the extraction rate of ALPs could reach 28.83%. FTIR, SEM and HPLC results showed that ALPs were typical acidic heteropolysaccharides and had uneven particle size distribution, an irregular shape, and a rough surface. The ALPs were chiefly composed of glucose, rhamnose, arabinose, and galactose with a molar ratio of 70.19:10.95:11.16:6.90. In addition, the ALPs had intense antioxidant activity in vitro with IC50 values in the ·OH radical (1.732 mg/ml), DPPH radical (0.29 mg/ml), and superoxide anion (0.15 mg/ml) scavenging abilities. Discussion The results showed that ATPS was an efficient method to extract polysaccharides and could be used for the extraction of other polysaccharides. These results indicated that ALPs had great prospects as a functional food and could be exploited in multiple fields.
Collapse
Affiliation(s)
- Dandan Gao
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xuhua Yang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xingchen Guo
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yuxuan Zhang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jinpu Ma
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jutian Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| | - Shuwen Ma
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
9
|
Punmiya A, Prabhu A. Structural fingerprinting of pleiotropic flavonoids for multifaceted Alzheimer's disease. Neurochem Int 2023; 163:105486. [PMID: 36641110 DOI: 10.1016/j.neuint.2023.105486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease has emerged as one of the most challenging neurodegenerative diseases associated with dementia, loss of cognitive functioning and memory impairment. Despite enormous efforts to identify disease modifying technologies, the repertoire of currently approved drugs consists of a few symptomatic candidates that are not capable of halting disease progression. Moreover, these single mechanism drugs target only a small part of the pathological cascade and do not address most of the etiological basis of the disease. Development of therapies that are able to simultaneously tackle all the multiple interlinked causative factors such as amyloid protein aggregation, tau hyperphosphorylation, cholinergic deficit, oxidative stress, metal dyshomeostasis and neuro-inflammation has become the focus of intensive research in this domain. Flavonoids are natural phytochemicals that have demonstrated immense potential as medicinal agents due to their multiple beneficial therapeutic effects. The polypharmacological profile of flavonoids aligns well with the multifactorial pathological landscape of Alzheimer's disease, making them promising candidates to overcome the challenges of this neurodegenerative disorder. This review presents a detailed overview of the pleiotropic biology of flavonoids favourable for Alzheimer therapeutics and the structural basis for these effects. Structure activity trends for several flavonoid classes such as flavones, flavonols, flavanones, isoflavones, flavanols and anthocyanins are comprehensively analyzed in detail and presented.
Collapse
Affiliation(s)
- Amisha Punmiya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
10
|
Khan M, Khan M, Al-hamoud K, Adil SF, Shaik MR, Alkhathlan HZ. Diversity of Citrullus colocynthis (L.) Schrad Seeds Extracts: Detailed Chemical Profiling and Evaluation of Their Medicinal Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:567. [PMID: 36771651 PMCID: PMC9919198 DOI: 10.3390/plants12030567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Seeds and fruits of Citrullus colocynthis have been reported to possess huge potential for the development of phytopharmaceuticals with a wide range of biological activities. Thus, in the current study, we are reporting the potential antimicrobial and anticancer properties of C. colocynthis seeds extracted with solvents of different polarities, including methanol (M.E.), hexane (H.E.), and chloroform (C.E.). Antimicrobial properties of C. colocynthis seeds extracts were evaluated on Gram-positive and Gram-negative bacteria, whereas, anticancer properties were tested on four different cell lines, including HepG2, DU145, Hela, and A549. All the extracts have demonstrated noteworthy antimicrobial activities with a minimum inhibitory concentration (MIC) ranging from 0.9-62.5 µg/mL against Klebsiella planticola and Staphylococcus aureus; meanwhile, they were found to be moderately active (MIC 62.5-250 µg/mL) against Escherichia coli and Micrococcus luteus strains. Hexane extracts have demonstrated the highest antimicrobial activity against K. planticola with an MIC value of 0.9 µg/mL, equivalent to that of the standard drug ciprofloxacin used as positive control in this study. For anticancer activity, all the extracts of C. colocynthis seeds were found to be active against all the tested cell lines (IC50 48.49-197.96 µg/mL) except for the chloroform extracts, which were found to be inactive against the HepG2 cell line. The hexane extract was found to possess the most prominent anticancer activity when compared to other extracts and has demonstrated the highest anticancer activity against the DU145 cell line with an IC50 value of 48.49 µg/mL. Furthermore, a detailed phytoconstituents analysis of all the extracts of C. colocynthis seeds were performed using GC-MS and GC-FID techniques. Altogether, 43 phytoconstituents were identified from the extracts of C. colocynthis seeds, among which 21, 12, and 16 components were identified from the H.E., C.E., and M.E. extracts, respectively. Monoterpenes (40.4%) and oxygenated monoterpenes (41.1%) were the most dominating chemical class of compounds from the hexane and chloroform extracts, respectively; whereas, in the methanolic extract, oxygenated aliphatic hydrocarbons (77.2%) were found to be the most dominating chemical class of compounds. To the best of our knowledge, all the phytoconstituents identified in this study are being reported for the first time from the C. colocynthis.
Collapse
|
11
|
Madani A, Choobkar N, Garmakhany AD. Determination of phenolic compounds and their antioxidant activity of Iranian Allium sativum controversum extracts and their antimicrobial properties in fresh sausages. Food Sci Nutr 2023; 11:274-283. [PMID: 36655097 PMCID: PMC9834842 DOI: 10.1002/fsn3.3059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023] Open
Abstract
In this study, Iranian Allium sativum controversum extracts, as a valuable source of bioactive compounds such as antioxidants, extracted by solvents were analyzed. Based on the analysis of total phenolic content (TPC) and total flavonoid content (TFC) and radical scavenging activity (1,1-diphenyl-2-picrylhydrazyl (DPPH)) of each extract, ethanol extracts were finally added to the sausage formulation at 0.5 and 1.5%w/v. Treatments were kept at refrigerated temperature (4-5°C) for 1, 15, and 30 days, and DPPH and microbial assays were performed on the treatments and the control samples. Experimental data were performed in a completely randomized design with the factorial arrangement. Hydroalcoholic extract had the highest total phenols and the aqueous extract of Allium sativum controversum showed the highest radical scavenging activity (11.85 ± 0.81 mg/g). No colony counts were observed on the first day of the coliform count. On 15 to 30 days, the control sample showed the highest count and the treatment containing Allium sativum controversum extract (1.5%) had the lowest coliform count. During the first month, the control sample had the highest count of Staphylococcus aureus. Regarding mold and yeast, a treatment containing Allium sativum controversum extract (1.5%) and the control sample had the lowest and highest count, respectively. The results showed that using Allium sativum controversum extracts and increased radical scavenging activity reduced microbial growth during the storage period.
Collapse
Affiliation(s)
- Adeleh Madani
- Department of Food Science and Egineering, Mahalat branchIslamic Azad UniversityMahalatIran
| | - Nasrin Choobkar
- Plant Biotechnology Research CenterKermanshah branch, Islamic Azad universityKermanshahIran
- Department of Fisheries, Faculty of Agriculture, Kermanshah branchIslamic Azad UniversityKermanshahIran
| | - Amir Daraei Garmakhany
- Department of Food Science and Technology, Toyserkan Faculty of Industrial EngineeringBu‐Ali Sina UniversityHamadanIran
| |
Collapse
|
12
|
Abdel Ghfar SS, Ali ME, Momenah MA, Al-Saeed FA, Al-Doaiss AA, Mostafa YS, Ahmed AE, Abdelrahman M. Effect of Allium sativum and Nigella sativa on alleviating aluminum toxicity state in the albino rats. Front Vet Sci 2022; 9:1042640. [PMID: 36524230 PMCID: PMC9745150 DOI: 10.3389/fvets.2022.1042640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
The study objective was to evaluate Allium sativum's potential and Nigella Sativa's combination's potential to reduce aluminum toxicity and return to the normal state. In the present study, a hundred albino rats were randomly divided into five equal groups. The first group was used as a control group; the other four groups were exposed to aluminum 1,600 ppm. The second exposed to aluminum only; the third and fourth groups were treated with Allium sativum 5% and Nigella sativa 5%, respectively, while the fifth group was treated with a mix of Allium sativum 2.5% and Nigella sativa 2.5% for 8th weeks. After 8 weeks, the aluminum administration was stopped, and the second group was divided into three groups. The groups were treated with Allium sativum 5% and Nigella sativa 5%, and a mix of Allium sativum 2.5% and Nigella sativa 2.5%, respectively. The first group was the control group (continued from the first experiment). Garlic and Nigella sativa were crushed and added to feed while receiving aluminum chloride daily at a dose of 1.6 ml/l was added to the drinking water. Histopathological changes in the liver, kidney, and testes were investigated after 8 and 16 weeks, and blood samples were collected after 4, 8, and 16 weeks for biochemical blood parameters. The results showed that the histopathological examination of the liver, kidney, and testes showed signs of congestion in blood vessels after aluminum exposure. Meanwhile, the treatment with Allium sativum or Nigella sativum or the mixture between them had positive effects on evading the harmful effects of aluminum in the liver, Kidney, and testes tissues. In addition, there were protective effects for Allium sativum and Nigella sativa against aluminum on serum creatinine, urea, ALT, and AST concentrations. The present study concluded that supplementation with Allium sativum or Nigella sativa or their combination could reduce aluminum toxicity and return the liver, kidney, and testes to normal.
Collapse
Affiliation(s)
| | - Montaser Elsayed Ali
- Department of Animal Productions, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatimah A. Al-Saeed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Amin A. Al-Doaiss
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Yasser Sabry Mostafa
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Theriogenology, Obstetrics, and Artificial Insemination, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mohamed Abdelrahman
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Animal Production Department, Faculty of Agriculture, Assiut University, Asyut, Egypt
| |
Collapse
|
13
|
Othman MS, Obeidat ST, Aleid GM, Al-Bagawi AH, Fehaid A, Habotta OA, Badawy MM, Elganzoury SS, Abdalla MS, Abdelfattah MS, Daiam MA, Abdel Moneim AE. Protective effect of Allium atroviolaceum-synthesized SeNPs on aluminum-induced brain damage in mice. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Abstract
This study evaluated the possible neuroprotective effect of Allium atroviolaceum extract (AaE)-synthesized selenium nanoparticles (SeNPs) on aluminum (Al)-induced neurotoxicity in mice, explaining the likely mechanisms. Mice were divided into five groups: G1, control; G2, AaE group that received AaE (200 mg/kg) for 4 weeks; and groups 3, 4, and 5 received AlCl3 (100 mg/kg) for 3 weeks. After that, G4 received AaE (200 mg/kg), and G5 received SeNPs-AaE (0.5 mg/kg) for another 1 week. Exposure to AlCl3 boosted oxidative damage in brain tissue as evidenced by a reduction in glutathione concentrations and other antioxidant enzymes along with increased lipid peroxidation and nitric oxide levels. There was also a rise in the concentrations of interleukin-1β, TNF-α, and cyclooxygenase-II activities. AlCl3-treated mice showed reduced brain-derived neurotrophic factor (BDNF) and dopamine levels, increased acetylcholinesterase (AChE) activity, and reduced Bcl-2, and Bax, and caspase-3 activities. Treatment with SeNPs-AaE significantly reduced markers of oxidative stress, inflammation, and apoptosis. In addition, in SeNPs-AaE-treated rats, levels of BDNF and dopamine were significantly increased along with a reduction in AChE as compared with the AlCl3 group. Therefore, our results indicate that SeNPs-AaE has a potential neuroprotective effect against Al-mediated neurotoxic effects because of its powerful antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory activities.
Collapse
Affiliation(s)
- Mohamed S. Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il , Hail , Kingdom of Saudi Arabia
- Biochemistry Department, Faculty of Biotechnology, October University for Modern Science and Arts (MSA) , Giza , Egypt
| | - Sofian T. Obeidat
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il , Hail , Kingdom of Saudi Arabia
| | - Ghada M. Aleid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il , Hail , Kingdom of Saudi Arabia
| | - Amal H. Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha’il , Hail , Kingdom of Saudi Arabia
| | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University , Dakahlia , Egypt
| | - Ola A. Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University , Dakahlia , Egypt
| | - Mohamed M. Badawy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University , Mansoura , Egypt
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Delta University for Science and Technology , Gamasa , Egypt
| | - Sara S. Elganzoury
- Chemistry Department, Faculty of Science, Helwan University , Cairo , Egypt
| | - Mohga S. Abdalla
- Chemistry Department, Faculty of Science, Helwan University , Cairo , Egypt
| | | | - Mohamed A. Daiam
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College , Jeddah , Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University , Ismailia , Egypt
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University , Cairo , Egypt
| |
Collapse
|
14
|
Improvement of the Ultrasound-Assisted Extraction of Polyphenols from Welsh Onion ( Allium fistulosum) Leaves Using Response Surface Methodology. Foods 2022; 11:foods11162425. [PMID: 36010426 PMCID: PMC9407235 DOI: 10.3390/foods11162425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
Welsh onion (Allium fistulosum) leaves contain several bioactive compounds that can be extracted and used to develop new value-added products (e.g., functional foods and dietary supplements). In the current work, optimal ultrasound-assisted extraction (UAE) conditions to obtain extracts with high polyphenols content and DPPH (1,1-diphenyl-2-picrylhydrazil) scavenging activity were identified using response surface methodology. A complete 3k factorial design was used to evaluate the effect of different variables of the UAE (extraction temperature, time, and ethanol concentration) on the polyphenols content and the DPPH scavenging activity of the extracts. The best conditions for UAE to reach both the highest values of total polyphenols content (51.78 mg GAE/100 g) and DPPH scavenging activity (34.07 mg Trolox equivalents/100 g) were an extraction temperature of 60 °C, time of 10 min, and ethanol concentration of 70% v/v. The antioxidant activity of the extracts obtained at the optimal conditions was also evaluated by 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and ferric reducing antioxidant power (FRAP) assays obtaining values of 155.51 ± 2.80 μM Trolox/100 g and 1300.21 ± 65.55 μM Trolox/100 g, respectively. Moreover, these extracts were characterized by UHPLC-ESI+-Orbitrap-MS analysis finding that cyanidin (6.0 mg/kg) was the phenolic compound found in the highest amount followed by quercetin-3-glucoside (4.4 mg/kg).
Collapse
|
15
|
Jiang XY, Liang JY, Si-Yuan J, Pan Z, Feng T, Jia L, Xin-Xia L, Zhao DS. Garlic polysaccharides: A review on their extraction, isolation, structural characteristics, and bioactivities. Carbohydr Res 2022; 518:108599. [DOI: 10.1016/j.carres.2022.108599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
|
16
|
Phenolic profile and investigation of biological activities of Allium scorodoprasum L. subsp. rotundum. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Lee HP, Kim DS, Park SH, Shin CY, Woo JJ, Kim JW, An RB, Lee C, Cho JY. Antioxidant Capacity of Potentilla paradoxa Nutt. and Its Beneficial Effects Related to Anti-Aging in HaCaT and B16F10 Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:873. [PMID: 35406853 PMCID: PMC9003520 DOI: 10.3390/plants11070873] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Skin aging is a natural process influenced by intrinsic and extrinsic factors, and many skin anti-aging strategies have been developed. Plants from the genus Potentilla has been used in Europe and Asia to treat various diseases. Potentilla paradoxa Nutt. has been used as a traditional medicinal herb in China and has recently been shown to have anti-inflammatory effects. Despite the biological and pharmacological potential of Potentilla paradoxa Nutt., its skin anti-aging effects remain unclear. Therefore, this study evaluated the free radical scavenging, moisturizing, anti-melanogenic, and wound-healing effects of an ethanol extract of Potentilla paradoxa Nutt. (Pp-EE). Pp-EE was found to contain phenolics and flavonoids and exhibits in vitro antioxidant activities. α-Linolenic acid was found to be a major component of Pp-EE on gas chromatography-mass spectrometry. Pp-EE promoted the expression of hyaluronic acid (HA) synthesis-related enzymes and suppressed the expression of HA degradation-related enzymes in keratinocytes, so it may increase skin hydration. Pp-EE also showed inhibitory effects on the production and secretion of melanin in melanocytes. In a scratch assay, Pp-EE improved skin wound healing. Taken together, Pp-EE has several effects that may delay skin aging, suggesting its potential benefits as a natural ingredient in cosmetic or pharmaceutical products.
Collapse
Affiliation(s)
- Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.P.L.); (D.S.K.); (J.W.K.)
| | - Dong Seon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.P.L.); (D.S.K.); (J.W.K.)
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (C.Y.S.); (J.J.W.)
| | - Chae Yun Shin
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (C.Y.S.); (J.J.W.)
| | - Jin Joo Woo
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (C.Y.S.); (J.J.W.)
| | - Ji Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.P.L.); (D.S.K.); (J.W.K.)
| | - Ren-Bo An
- College of Pharmacy, Yanbian University, Yanji 133002, China;
| | - Changyoung Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.P.L.); (D.S.K.); (J.W.K.)
| |
Collapse
|
18
|
Single and Combined Effect of Mild-Heat Treatment and Alginate Coatings on Quality Preservation of Minimally Processed Bunching Green Onions. Foods 2022; 11:foods11050641. [PMID: 35267274 PMCID: PMC8909205 DOI: 10.3390/foods11050641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023] Open
Abstract
Bunching green onion is an Allium species that has been widely used in food flavorings and seasonings. This vegetable experiences a rapid loss of quality during storage due to physiological changes and microbial spoilage. In the current work, the single and combined effect of mild-heat treatment (55 °C for 60 s) and alginate edible coatings on the quality preservation of minimally processed bunching green onions was studied. Control and treated samples were stored at 4 °C for 15 days and examined periodically in terms of their respiration rate, weight loss, pH, soluble solids content, firmness, total polyphenol content, antioxidant activity, microbial count, decay ratio, and overall visual quality. The results showed that the combination of mild heat and alginate edible coatings was the most effective approach to slow down the respiration rate and the incidence of decay in the minimally processed bunching green onions. In addition, the treatments with alginate coating alone or combined with mild-heat treatment showed the best performance for maintaining the overall visual quality of the products during the storage.
Collapse
|