1
|
Poggetti V, Angeloni E, Germelli L, Natale B, Waqas M, Sarno G, Angeli A, Daniele S, Salerno S, Barresi E, Cosconati S, Castellano S, Da Pozzo E, Costa B, Supuran CT, Da Settimo F, Taliani S. Discovery of the First-in-Class Dual TSPO/Carbonic Anhydrase Modulators with Promising Neurotrophic Activity. ACS Chem Neurosci 2025; 16:1-15. [PMID: 39545683 DOI: 10.1021/acschemneuro.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
In searching for putative new therapeutic strategies to treat neurodegenerative diseases, the mitochondrial 18 kDa translocator protein (TSPO) and cerebral isoforms of carbonic anhydrase (CA) were exploited as potential targets. Based on the structures of a class of highly affine and selective TSPO ligands and a class of CA activators, both developed by us in recent years, a small library of 2-phenylindole-based dual TSPO/CA modulators was developed, able to bind TSPO and activate CA VII in the low micromolar/submicromolar range. The interaction with the two targets was corroborated by computational studies. Biological investigation on human microglia C20 cells identified derivative 3 as a promising lead compound worthy of future optimization due to its (i) lack of cytotoxicity, (ii) ability to stimulate TSPO steroidogenic function and activate CA VII, and (iii) ability to effectively upregulate gene expression of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Benito Natale
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi, 43, 81100 Caserta, Italy
| | - Muhammad Waqas
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi, 43, 81100 Caserta, Italy
| | - Giuliana Sarno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Polo Scientifico, University of Florence, Via U. Schiff, 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi, 43, 81100 Caserta, Italy
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Polo Scientifico, University of Florence, Via U. Schiff, 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| |
Collapse
|
2
|
Mishra KA, Sethi KK. Unveiling tomorrow: Carbonic anhydrase activators and inhibitors pioneering new frontiers in Alzheimer's disease. Arch Pharm (Weinheim) 2024:e2400748. [PMID: 39506506 DOI: 10.1002/ardp.202400748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and a principal basis of dementia in the elderly population globally. Recently, human carbonic anhydrases (hCAs, EC 4.2.1.1) were demonstrated as possible new targets for treating AD. hCAs are vital for maintaining pH balance and performing other physiological processes as they catalyze the reversible hydration of carbon dioxide to bicarbonate and a proton. Current research indicates that hCA plays a role in brain functions critical for transmitting neural signals. Activation of carbonic anhydrase (CA) has emerged as a promising avenue in addressing memory loss and cognitive issues. Conversely, the exploration of CA inhibition represents a novel frontier in this field. By enhancing glial fitness and cerebrovascular health and blocking amyloid-β (Aβ)-induced mitochondrial dysfunction pathways, cytochrome C (CytC) release, caspase 9 activation, and H2O2 generation in neurons, CA inhibitors improve cognition and lessen the pathology caused by Aβ. Recent research has pushed hCAs into the spotlight as critical players in AD pathogenesis and precise therapeutic targets. The captivating dilemma of choosing between hCA inhibitors and activators looms large, as inhibitors reduce Aβ aggregation and improve cerebral blood flow, while activators enhance cerebrovascular functions and restore pH balance. The current review sheds light on the clinical evidence for hCAs and the roles of inhibitors and activators in AD. Additionally, this review offers a fascinating outlook on the data that may aid medicinal chemists in designing and developing new leads that are more effective and selective for upcoming in vitro and in vivo studies, allowing for the discovery and introduction of novel drug candidates for the treatment of AD to the market and into the clinical pipeline.
Collapse
Affiliation(s)
- Km Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, Assam, India
| | - Kalyan K Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, Assam, India
| |
Collapse
|
3
|
Nocentini A, Costa A, Bonardi A, Ammara A, Giovannuzzi S, Petreni A, Bartolucci G, Rani B, Leri M, Bucciantini M, Fernández-Bolaños JG, López Ó, Passani MB, Provensi G, Gratteri P, Supuran CT. Enhanced Recognition Memory through Dual Modulation of Brain Carbonic Anhydrases and Cholinesterases. J Med Chem 2024; 67:16873-16898. [PMID: 39283654 DOI: 10.1021/acs.jmedchem.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This study introduces a novel multitargeting strategy that combines carbonic anhydrase (CA) activators and cholinesterase (ChE) inhibitors to enhance cognitive functions. A series of tacrine-based derivatives with amine/amino acid moieties were synthesized and evaluated for their dual activity on brain CA isoforms and ChEs (AChE and BChE). Several derivatives, notably compounds 26, 30, 34, and 40, demonstrated potent CA activation, particularly of hCA II and VII, and strong ChE inhibition with subnanomolar to low nanomolar IC50 values. In vivo studies using a mouse model of social recognition memory showed that these derivatives significantly improved memory consolidation at doses 10-100 times lower than the reference compounds (either alone or in combination). Molecular modeling and ADMET predictions elucidated the compound binding modes and confirmed favorable pharmacokinetic and safety profiles. The findings suggest that dual modulation of CA and ChE activities is a promising strategy for treating cognitive deficits associated with neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Alessio Nocentini
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Alessia Costa
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, Laboratory of Ocular and Neuropsychopharmacology (Braeye Lab), University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Andrea Ammara
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Andrea Petreni
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Gianluca Bartolucci
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Barbara Rani
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, Laboratory of Ocular and Neuropsychopharmacology (Braeye Lab), University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy
| | - José G Fernández-Bolaños
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville 41012, Spain
| | - Óscar López
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville 41012, Spain
| | - Maria Beatrice Passani
- Department of Health Sciences, Laboratory of Ocular and Neuropsychopharmacology (Braeye Lab), University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Gustavo Provensi
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, Laboratory of Ocular and Neuropsychopharmacology (Braeye Lab), University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
4
|
Angeli A, De Luca V, Capasso C, Di Costanzo LF, Supuran CT. Comparative CO 2 and SiO 2 hydratase activity of an enzyme from the siliceous demosponge Suberitesdomuncula. Arch Biochem Biophys 2024; 758:110074. [PMID: 38936682 DOI: 10.1016/j.abb.2024.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Silicase, an enzyme that catalyzes the hydrolysis of silicon-oxygen bonds, is a crucial player in breaking down silicates into silicic acid, particularly in organisms like aquatic sponges with siliceous skeletons. Despite its significance, our understanding of silicase remains limited. This study comprehensively examines silicase from the demosponge Suberites domuncula, focusing on its kinetics toward CO2 as a substrate, as well as its silicase and esterase activity. It investigates inhibition and activation profiles with a range of inhibitors and activators belonging to various classes. By comparing its esterase activity to human carbonic anhydrase II, we gain insights into its enzymatic properties. Moreover, we investigate silicase's inhibition and activation profiles, providing valuable information for potential applications. We explore the evolutionary relationship of silicase with related enzymes, revealing potential functional roles in biological systems. Additionally, we propose a biochemical mechanism through three-dimensional modeling, shedding light on its catalytic mechanisms and structural features for both silicase activity and CO2 hydration. We highlight nature's utilization of enzymatic expertise in silica metabolism. This study enhances our understanding of silicase and contributes to broader insights into ecosystem functioning and Earth's geochemical cycles, emphasizing the intricate interplay between biology and the environment.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy.
| | - Luigi F Di Costanzo
- Department of Agriculture, University of Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
5
|
Capasso C, Supuran CT. Bacterial ι-CAs. Enzymes 2024; 55:121-142. [PMID: 39222989 DOI: 10.1016/bs.enz.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recent research has identified a novel class of carbonic anhydrases (CAs), designated ι-CA, predominantly found in marine diatoms, eukaryotic algae, cyanobacteria, bacteria, and archaea genomes. This class has garnered attention owing to its unique biochemical properties and evolutionary significance. Through bioinformatic analyses, LCIP63, a protein initially annotated with an unknown function, was identified as a potential ι-CA in the marine diatom Thalassiosira pseudonana. Subsequent biochemical characterization revealed that LCIP63 has CA activity and its preference for manganese ions over zinc, indicative of evolutionary adaptation to marine environments. Further exploration of bacterial ι-CAs, exemplified by Burkholderia territorii ι-CA (BteCAι), demonstrated catalytic efficiency and sensitivity to sulfonamide and inorganic anion inhibitors, the classical CA inhibitors (CAIs). The classification of ι-CAs into two variant types based on their sequences, distinguished by the COG4875 and COG4337 domains, marks a significant advancement in our understanding of these enzymes. Structural analyses of COG4337 ι-CAs from eukaryotic microalgae and cyanobacteria thereafter revealed a distinctive structural arrangement and a novel catalytic mechanism involving specific residues facilitating CO2 hydration in the absence of metal ion cofactors, deviating from canonical CA behavior. These findings underscore the biochemical diversity within the ι-CA class and highlight its potential as a target for novel antimicrobial agents. Overall, the elucidation of ι-CA properties and mechanisms advances our knowledge of carbon metabolism in diverse organisms and underscores the complexity of CA evolution and function.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, italy
| |
Collapse
|
6
|
Cuffaro D, Di Leo R, Ciccone L, Nocentini A, Supuran CT, Nuti E, Rossello A. New isoxazolidinyl-based N-alkylethanolamines as new activators of human brain carbonic anhydrases. J Enzyme Inhib Med Chem 2023; 38:2164574. [PMID: 36630083 PMCID: PMC9848372 DOI: 10.1080/14756366.2022.2164574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Carbonic anhydrases (CAs) are widespread metalloenzymes which catalyse the reversible hydration of carbon dioxide (CO2) to bicarbonate (HCO3-) and a proton, relevant in many physiological processes. In the last few years, the involvement of CA activation in different metabolic pathways in the human brain addressed the research to the discovery of novel CA activators. Here, a new series of isoxazoline-based amino alcohols as CA activators was investigated. The synthesis and the CA activating effects towards four human CA isoforms expressed in the human brain, that are hCAs I, II, IV and VII, were reported. The best results were obtained for the (methyl)-isoxazoline-amino alcohols 3 and 5 with KA values in the submicromolar range (0.52-0.86 µM) towards hCA VII, and a good selectivity over hCA I. Being hCA VII involved in brain function and metabolism, the newly identified CA activators might be promising hit compounds with potential therapeutic applications in ageing, epilepsy or neurodegeneration.
Collapse
Affiliation(s)
| | | | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessio Nocentini
- Department of Neurofarba, University of Florence, Sesto Fiorentino, Italy,CONTACT Alessio Nocentini Physical address Department of Neurofarba, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department of Neurofarba, University of Florence, Sesto Fiorentino, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Pisa, Italy,Elisa Nuti Physical address Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
7
|
Haapanen S, Angeli A, Tolvanen M, Emameh RZ, Supuran CT, Parkkila S. Cloning, characterization, and inhibition of the novel β-carbonic anhydrase from parasitic blood fluke, Schistosoma mansoni. J Enzyme Inhib Med Chem 2023; 38:2184299. [PMID: 36856011 PMCID: PMC9980027 DOI: 10.1080/14756366.2023.2184299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Schistosoma mansoni is an intestinal parasite with one β-class carbonic anhydrase, SmaBCA. We report the sequence enhancing, production, catalytic activity, and inhibition results of the recombinant SmaBCA. It showed significant catalytic activity on CO2 hydration in vitro with kcat 1.38 × 105 s-1 and kcat/Km 2.33 × 107 M-1 s-1. Several sulphonamide inhibitors, from which many are clinically used, showed submicromolar or nanomolar inhibitory effects on SmaBCA. The most efficient inhibitor with a KI of 43.8 nM was 4-(2-amino-pyrimidine-4-yl)-benzenesulfonamide. Other effective inhibitors with KIs in the range of 79.4-95.9 nM were benzolamide, brinzolamide, topiramate, dorzolamide, saccharin, epacadostat, celecoxib, and famotidine. The other tested compounds showed at least micromolar range inhibition against SmaBCA. Our results introduce SmaBCA as a novel target for drug development against schistosomiasis, a highly prevalent parasitic disease.
Collapse
Affiliation(s)
- Susanna Haapanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,CONTACT Susanna Haapanen Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Martti Tolvanen
- Department of Computing, University of Turku, Turku, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Claudiu T. Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
8
|
Fiorentino F, Nocentini A, Rotili D, Supuran CT, Mai A. Antihistamines, phenothiazine-based antipsychotics, and tricyclic antidepressants potently activate pharmacologically relevant human carbonic anhydrase isoforms II and VII. J Enzyme Inhib Med Chem 2023; 38:2188147. [PMID: 36912265 PMCID: PMC10013323 DOI: 10.1080/14756366.2023.2188147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Carbonic anhydrases (CAs) are important regulators of pH homeostasis and participate in many physiological and pathological processes. CA activators (CAAs) are becoming increasingly important in the biomedical field since enhancing CA activity may have beneficial effects at neurological level. Here, we investigate selected antihistamines, phenothiazine-based antipsychotics, and tricyclic antidepressants (TCAs) as potential activators of human CAs I, II, IV, and VII. Our findings indicate that these compounds are more effective at activating hCA II and VII compared to hCA I and IV. Overall, hCA VII was the most efficiently activated isoform, particularly by phenothiazines and TCAs. This is especially relevant since hCA VII is the most abundant isoform in the central nervous system (CNS) and is implicated in neuronal signalling and bicarbonate balance regulation. This study offers additional insights into the pharmacological profiles of clinically employed drugs and sets the ground for the development of novel optimised CAAs.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Polo Scientifico, University of Florence, Firenze, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Polo Scientifico, University of Florence, Firenze, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Saied S, Shaldam M, Elbadawi MM, Giovannuzzi S, Nocentini A, Almahli H, Salem R, Ibrahim TM, Supuran CT, Eldehna WM. Discovery of indolinone-bearing benzenesulfonamides as new dual carbonic anhydrase and VEGFR-2 inhibitors possessing anticancer and pro-apoptotic properties. Eur J Med Chem 2023; 259:115707. [PMID: 37556946 DOI: 10.1016/j.ejmech.2023.115707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
In the current medical era, the utilization of a single small molecule to simultaneously target two distinct molecular targets is emerging as a highly effective strategy in the battle against cancer. Carbonic Anhydrase (CA) and Vascular-Endothelial Growth Factor (VEGF) are genes that are activated in response to low oxygen levels (hypoxia) and play a role in the development and progression of tumors in hypoxic conditions. Herein we report the design, synthesis, and biological assessment of a series of novel indolinone-based benzenesulfonamides (8a-k, 11a-d, 15a-d, and 16) as potential dual inhibitors for cancer-associated hCA IX/XII and VEGFR-2. All the synthesized sulfonamides were assessed for their inhibitory effect against four CA isoforms I, II, IX, and XII where they displayed varying degrees of hCA inhibition. The most effective and selective hCA IX and XII inhibitors 8g, 8j and 15b were chosen to be tested for their in vitro inhibitory impact against VEGFR-2 as well as their antiproliferative impact against VEGFR-2 overexpressing MDA-MB-231 and MCF-7 breast cancer cells. Furthermore, molecular docking studies were conducted within the hCA IX, XII, and VEGFR-2 active sites to explain the observed inhibitory results.
Collapse
Affiliation(s)
- Samaa Saied
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| |
Collapse
|
10
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
11
|
Hydroxyethylamide substituted triterpenoic acids hold good cytotoxicity for human tumor cells. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Poggetti V, Salerno S, Baglini E, Barresi E, Da Settimo F, Taliani S. Carbonic Anhydrase Activators for Neurodegeneration: An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082544. [PMID: 35458743 PMCID: PMC9031706 DOI: 10.3390/molecules27082544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Carbonic anhydrases (CAs) are a family of ubiquitous metal enzymes catalyzing the reversible conversion of CO2 and H2O to HCO3− with the release of a proton. They play an important role in pH regulation and in the balance of body fluids and are involved in several functions such as homeostasis regulation and cellular respiration. For these reasons, they have been studied as targets for the development of agents for treating several pathologies. CA inhibitors have been used in therapy for a long time, especially as diuretics and for the treatment of glaucoma, and are being investigated for application in other pathologies including obesity, cancer, and epilepsy. On the contrary, CAs activators are still poorly studied. They are proposed to act as additional (other than histidine) proton shuttles in the rate-limiting step of the CA catalytic cycle, which is the generation of the active hydroxylated enzyme. Recent studies highlight the involvement of CAs activation in brain processes essential for the transmission of neuronal signals, suggesting CAs activation might represent a potential therapeutic approach for the treatment of Alzheimer’s disease and other conditions characterized by memory impairment and cognitive problems. Actually, some compounds able to activate CAs have been identified and proposed to potentially resolve problems related to neurodegeneration. This review reports on the primary literature regarding the potential of CA activators for treating neurodegeneration-related diseases.
Collapse
|
13
|
Alrooqi M, Khan S, Alhumaydhi FA, Asiri SA, Alshamrani M, Mashraqi MM, Alzamami A, Alshahrani AM, Aldahish AA. A Therapeutic Journey of Pyridine-Based Heterocyclic Compounds as Potent Anticancer Agents: A Review (From 2017 to 2021). Anticancer Agents Med Chem 2022; 22:2775-2787. [PMID: 35331100 DOI: 10.2174/1871520622666220324102849] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Pyridine derivatives are the most common and significant heterocyclic compounds, which show their fundamental characteristics to various pharmaceutical agents and natural products. Pyridine derivatives possess several pharmacological properties and a broad degree of structural diversity that is considered most valuable to explore the novel therapeutic agents. These compounds have an extensive range of biological activities such as antifungal, antibacterial, anticancer, anti-obesity, anti-inflammatory, antitubercular, antihypertensive, antineuropathic, antihistaminic, antiviral activities, and antiparasitic. The potent therapeutic properties of pyridine derivatives allow medicinal chemists to synthesize novel and effective chemotherapeutic agents. Consequently, the imperative objective of this comprehensive review is to summarize and investigate the literature regarding recent advancements in pyridine-based heterocycles to treat several kinds of cancer. Furthermore, the performances of pyridine derivatives were compared with some standard drugs including etoposide, sorafenib, cisplatin, and triclosan against different cancer cell lines. We hope this study will support the new thoughts to pursue the most active and less toxic rational designs.
Collapse
Affiliation(s)
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Saeed A Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Aciences, Najran University
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmad Alzamami
- College of Applied Medical science Clinical Laboratory science department Shaqra University, Saudi Arabia
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Afaf A Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| |
Collapse
|