1
|
Fedeli R, Dichiara M, Carullo G, Tudino V, Gemma S, Butini S, Campiani G, Loppi S. Unlocking the potential of biostimulants in sustainable agriculture: Effect of wood distillate on the nutritional profiling of apples. Heliyon 2024; 10:e37599. [PMID: 39315190 PMCID: PMC11417550 DOI: 10.1016/j.heliyon.2024.e37599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
In this work, we report the investigation of the effect of exposure of apple trees to the bioeffector wood distillate (WD), a plant biostimulant used for improving the nutritional profiling of crop plants. We measured the effect by evaluating the biochemical and nutritional profile of both pulps and skin of fruits. WD (0.2 %, v/v) was applied once a week by foliar application, from May 2023 until September 2023. The results indicate that the WD-treated apples have a significant increase in several analyzed parameters (i.e., phenols, flavonoids, tannins, total antioxidant power, sugars, pectin, free amino acids, and mineral element content), especially in the pulp. These data were also confirmed by NMR and LC-ESI-MS techniques. This study pointed out that WD could be a handy tool for the cultivation of fruit trees.
Collapse
Affiliation(s)
- Riccardo Fedeli
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Maria Dichiara
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Gabriele Carullo
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Valeria Tudino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Sandra Gemma
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Stefania Butini
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Giuseppe Campiani
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Stefano Loppi
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
2
|
Girotto OS, Furlan OO, Moretti Junior RC, Goulart RDA, Baldi Junior E, Barbalho-Lamas C, Fornari Laurindo L, Barbalho SM. Effects of apples ( Malus domestica) and their derivatives on metabolic conditions related to inflammation and oxidative stress and an overview of by-products use in food processing. Crit Rev Food Sci Nutr 2024:1-32. [PMID: 39049560 DOI: 10.1080/10408398.2024.2372690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Apple (Malus domestica) is the third most produced fruit worldwide. It is a well-known source of bioactive compounds mainly represented by hydroxycinnamic acids, flavan-3-ols, dihydrochalcones, dehydroascorbic acid, carotenoids, chlorogenic acid, epicatechin, and phloridzin. Due to the lack of a recent evaluation of the clinical trials associated with apple consumption, this review investigated the effects of this fruit on metabolic conditions related to inflammation and oxidative stress and reviewed the applications of apple waste on food products. Thirty-three studies showed that apples or its derivatives exhibit anti-inflammatory and antioxidant actions, improve blood pressure, body fat, insulin resistance, dyslipidemia, and reduce cardiovascular risks. Apples have a great economic impact due to its several applications in the food industry and as a food supplement since it has impressive nutritional value. Dietary fiber from the fruit pomace can be used as a substitute for fat in food products or as an improver of fiber content in meat products. It can also be used in bakery and confectionary products or be fermented to produce alcohol. Pomace phytocompounds can also be isolated and applied as antioxidants in food products. The potential for the use of apples and by-products in the food industry can reduce environmental damage.
Collapse
Affiliation(s)
- Otávio Simões Girotto
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | - Otávio Oliveira Furlan
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | | | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Edgar Baldi Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Caroline Barbalho-Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
| | - Sandra M Barbalho
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
- School of Food and Technonolgy of Marilia (FATEC), São Paulo, Brazil
| |
Collapse
|
3
|
Dai W, Zhang L, Dai L, Tian Y, Ye X, Wang S, Li J, Wang Q. Comparative Analysis of Chemical Composition of Zanthoxylum myriacanthum Branches and Leaves by GC-MS and UPLC-Q-Orbitrap HRMS, and Evaluation of Their Antioxidant Activities. Molecules 2023; 28:5631. [PMID: 37570601 PMCID: PMC10419930 DOI: 10.3390/molecules28155631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Zanthoxylum myriacanthum Wall. ex Hook. f., a plant belonging to the Rutaceae family and the Zanthoxylum genus, is extensively utilized for its medicinal properties and as a culinary seasoning in China and Southeast Asian countries. However, the chemical composition and biological activities of Z. myriacanthum branches and leaves remain insufficiently explored. In this study, the volatile and non-volatile components of Z. myriacanthum branches and leaves were analyzed using GC-MS and UPLC-Q-Orbitrap HRMS techniques. A total of 78 volatile compounds and 66 non-volatile compounds were identified. The volatile compounds were predominantly terpenoids and aliphatic compounds, while the non-volatile compounds were primarily flavonoids and alkaloids. The branches contained 52 volatile compounds and 33 non-volatile compounds, whereas the leaves contained 48 volatile compounds and 40 non-volatile compounds. The antioxidant activities of the methanol extracts from Z. myriacanthum branches and leaves were evaluated using ABTS and DPPH free-radical-scavenging assays, both of which demonstrated certain antioxidant activity. The methanol extract of leaves demonstrated significantly higher antioxidant activity compared to that of the branches, possibly due to the higher presence of flavonoids and phenols in the leaves, with IC50 values of 7.12 ± 0.257 μg/mL and 1.22 × 102 ± 5.01 μg/mL for ABTS and DPPH, respectively. These findings enhance our understanding of the chemical composition and antioxidant potential of Z. myriacanthum. The plant holds promise as a natural source of antioxidants for applications in pharmaceuticals, cosmetics, and functional foods. Further research can explore its broader biological activities and potential applications.
Collapse
Affiliation(s)
- Wei Dai
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Liangqian Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Liping Dai
- College of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Yuan Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Xinger Ye
- College of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Sina Wang
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Jingtao Li
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Qi Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| |
Collapse
|
4
|
Nie F, Liu L, Cui J, Zhao Y, Zhang D, Zhou D, Wu J, Li B, Wang T, Li M, Yan M. Oligomeric Proanthocyanidins: An Updated Review of Their Natural Sources, Synthesis, and Potentials. Antioxidants (Basel) 2023; 12:antiox12051004. [PMID: 37237870 DOI: 10.3390/antiox12051004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Oligomeric Proanthocyanidins (OPCs), as a class of compounds widely found in plants, are particularly abundant in grapes and blueberries. It is a polymer comprising many different monomers, such as catechins and epicatechins. The monomers are usually linked to each other by two types of links, A-linkages (C-O-C) and B-linkages (C-C), to form the polymers. Numerous studies have shown that compared to high polymeric procyanidins, OPCs exhibit antioxidant properties due to the presence of multiple hydroxyl groups. This review describes the molecular structure and natural source of OPCs, their general synthesis pathway in plants, their antioxidant capacity, and potential applications, especially the anti-inflammatory, anti-aging, cardiovascular disease prevention, and antineoplastic functions. Currently, OPCs have attracted much attention, being non-toxic and natural antioxidants of plant origin that scavenge free radicals from the human body. This review would provide some references for further research on the biological functions of OPCs and their application in various fields.
Collapse
Affiliation(s)
- Fanxuan Nie
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lili Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jiamin Cui
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuquan Zhao
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dawei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dinggang Zhou
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinfeng Wu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
5
|
Li H, Gao L, Shao H, Li B, Zhang C, Sheng H, Zhu L. Elucidation of active ingredients and mechanism of action of hawthorn in the prevention and treatment of atherosclerosis. J Food Biochem 2022; 46:e14457. [PMID: 36200679 DOI: 10.1111/jfbc.14457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Hawthorn (HT), a functional food and medicinal herb for centuries in China, has potential preventive and therapeutic effects on atherosclerosis (AS). However, the mechanisms and active ingredients of HT in the prevention and treatment of AS are unclear. This study aimed to reveal active components and mechanism of HT in the prevention and treatment of AS using UHPLC-Q-Exactive Orbitrap MS and network pharmacology. A total of 50 compounds were identified by UHPLC-Q-Exactive Orbitrap MS. Six core targets and six active compounds were obtained by network pharmacology. Apigenin, luteolin, chrysin, quercetin, oleanic acid, and corosolic acid were the active components in the prevention and treatment of AS, and core targets included SRC, HSP90AA1, MAPK3, EGFR, HRAS, and AKT1. The key signaling pathways involved are MAPK, HIF-1, NF-kappa B, PI3K-Akt, TNF, Rap1, Ras, and VEGF signaling pathways. Further molecular docking results indicated that the six active compounds had strong hydrogen bonding ability with the six core targets. On the molecular level, HT may regulate AS by controlling cell survival and proliferation, reducing the levels of enzymes HMG-CoA reductase and lipoprotein lipase and inhibiting inflammatory response. PRACTICAL APPLICATIONS: HT can serve as "medicine-food homology" for dietary supplement and exert potential preventive and therapeutic effects on AS. However, the mechanisms of HT in the prevention and treatment of AS are unclear. This study describes a rapid method of detecting and identifying the components and mechanism of HT based on LC-MS and network pharmacology, which provides a theoretical and scientific support for further application of HT and guidance for the research of other herbal medicines.
Collapse
Affiliation(s)
- Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
UPLC-HRMS Polyphenolic Characterization, Contents and Antioxidant Activity of Zingiber officinale Roscoe rhizomes from Costa Rica. Processes (Basel) 2022. [DOI: 10.3390/pr10040691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Zingiber officinale Roscoe rhizomes have been associated with multiple health benefits, such as blocking blood clotting, digestive and antinausea effects and aid in respiratory conditions. These effects have been linked with their polyphenolic main metabolites, gingerols and shogaols. Herewith, we report a detailed study on the polyphenolic profile and in the contents of main gingerols and shogaol as well as the antioxidant activity of extracts from Z. officinale rhizomes (n = 17) produced in Costa Rica. Using UPLC-QTOF-ESI MS, a total of 34 polyphenols were identified, grouped in 12 types of structures. In addition, our findings on the main metabolites using UPLC-DAD show all rhizomes complying with total gingerols (TG) content established by the United States Pharmacopeia (USP). At an individual level, samples SR-1 and NR-4 show the higher contents and also exhibit the highest Folin–Ciocalteu (FC) reducing capacity results as well as the best DPPH antioxidant values. In addition, Pearson correlation analysis results showed positive correlation (p < 0.05) between TG and 6-gingerol with FC results and negative correlation (p < 0.05) between 6-gingerol, TG and FC with DPPH results. In turn, Principal Component Analysis (PCA) indicated variability in the composition associated with their region of origin and confirmed that NR-3, NR-4, and especially SR-1 stand out significatively, showing the highest PC1 because of its particularly high TG, 6-gingerol and antioxidant activities. Finally, results from controlled experimental plots of Z. officinale rhizomes (n = 6) indicated influence on metabolites content with higher values for a shorter harvest time and high tunnel cultivation. Therefore, our findings indicate the value of Z. officinale in the elaboration of products with potential benefits for health, delivering extracts with higher levels of gingerols than previous reports and exhibiting high antioxidant activity.
Collapse
|
7
|
Polyphenolic HRMS Characterization, Contents and Antioxidant Activity of Curcuma longa Rhizomes from Costa Rica. Antioxidants (Basel) 2022; 11:antiox11040620. [PMID: 35453305 PMCID: PMC9030737 DOI: 10.3390/antiox11040620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 01/30/2023] Open
Abstract
Curcuma longa constitutes an important source of secondary metabolites that have been associated with multiple health benefits. For instance, curcumin, demethoxycurcumin and bisdemethoxycurcumin, have been found to perform important biological activities, such as anti-inflammatory, antioxidant, anticancer, antimicrobial, antihypertensive and anticoagulant. These promising results prompted this research to evaluate the polyphenols of C. longa rhizomes in Costa Rica. The present work reports a comprehensive study on the polyphenolic profile and the contents of the three main curcuminoids as well as the antioxidant activity of extracts from C. longa rhizomes (n = 12) produced in Costa Rica. Through UPLC-QTOF-ESI MS, a total of 33 polyphenols were identified, grouped in eight types of structures. In addition, our findings on the main curcuminoids using UPLC-DAD show all rhizomes complying with total curcuminoids (TC) content established by the United States Pharmacopeia (USP). At an individual level, samples NW-3 and NE-1 show the higher contents (118.7 and 125.0 mg/g dry material), representing more than twice the average values of the lowest samples. These samples also exhibit the highest Folin−Ciocalteu (FC) reducing capacity results as well as the best DPPH (IC50 15.21 and 16.07 µg extract/mL) and NO (IC50 between 52.5 and 54.3 µg extract/mL) antioxidant values. Further, Pearson correlation analysis findings indicated positive correlation (p < 0.05) between TC, CUR with FC results (r = 0.833 and r = 0.867 respectively) and negative correlation (p < 0.05) between CUR, TC and FC with DPPH results (r = −0.898, r = −0.911, and r = −0.890, respectively) and between NO results and DPPH (r = −0.805, p < 0.05). Finally, results for Principal Component Analysis (PCA) showed composition variability associated with their region of origin with products from the Northeastern (NE) region exhibiting higher average values for FC, TC and antioxidant activities. Further, PCA confirmed that two samples, namely NE-1 and NW-3, stand out by presenting the highest PC1 due to their particularly high TC, CUR and antioxidant activities. Consequently, our findings agree with previous results indicating the importance of C. longa extracts to elaborate products with potential benefits for health, while delivering extracts with higher levels of curcuminoids than previous reports and exhibiting high antioxidant activity.
Collapse
|