1
|
Mura P, Maestrelli F, Gonçalves LMD, Cirri M, Mennini N, Almeida AJ. Cyclodextrin complexation as a fruitful strategy for improving the performance of nebivolol delivery from solid lipid nanoparticles. Int J Pharm 2025; 668:124972. [PMID: 39566697 DOI: 10.1016/j.ijpharm.2024.124972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Oral bioavailability of nebivolol (NEB), a highly-selective β1-adrenergic receptor antagonist specially used in hypertension treatment, is limited by its low aqueous solubility. In this work we investigated the possibility of developing a new effective oral formulation of NEB by exploiting a combined strategy based on NEB complexation with hydroxypropyl-βCyclodextrin (HPβCD) and complex incorporation into solid lipid nanoparticles (SLNs). Solubility studies enabled to choose Imwitor 491 and 988 as solid lipids for SLN preparation. The effect of their separated or combined use, at different amounts, and of different surfactants on nanoparticles dimensions, homogeneity and surface charge was examined. The best formulations were selected for drug loading, as such or as complex with HPβCD, and evaluated for physicochemical properties, morphology, entrapment efficiency and drug release. A comparison of the two kinds of formulations revealed that the presence of HPβCD improved SLNs quality in terms of reduced dimensions, higher homogeneity and greater physicochemical stability, avoiding the sharp Zeta Potential reduction observed when loading the plain drug; moreover, it allowed a marked increase in entrapment efficiency and better control of drug release. Furthermore, the use of HPβCD gave the opportunity of doubling drug loading without noticeable variations in SLNs physicochemical properties and maintaining excellent entrapment efficiency.
Collapse
Affiliation(s)
- P Mura
- Department of Chemistry, School of Sciences of Human Health, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - F Maestrelli
- Department of Chemistry, School of Sciences of Human Health, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - L M D Gonçalves
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - M Cirri
- Department of Chemistry, School of Sciences of Human Health, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - N Mennini
- Department of Chemistry, School of Sciences of Human Health, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - A J Almeida
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
2
|
Swain SK, Phaomei G, Dash SK, Tripathy SK. Synthesis of Magnetic Luminescent Nanoparticle Fe 3O 4@LaF 3:Eu,Ag@APTES@β-CD, a Potential Carrier of Antimicrobial Drug Ciprofloxacin. Indian J Microbiol 2024; 64:1637-1645. [PMID: 39678968 PMCID: PMC11645346 DOI: 10.1007/s12088-024-01202-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/06/2024] [Indexed: 12/17/2024] Open
Abstract
Fe3O4@LaF3:Eu,Ag hybrid magnetic luminescent nanoparticles (NPs) were synthesized using a simple co-precipitation method and then functionalized with β-cyclodextrin (β-CD) using (3-aminopropyl)triethoxysilane (APTES). The chemical composition, crystalline nature, particle size, and surface morphology of the Fe3O4@LaF3:Eu,Ag@APTES@β-CD NPs were investigated, using powder X-ray diffraction, and high-resolution transmission electron microscopy. The uptake and release profiling of the LaF3:Eu,Ag@Fe3O4@β-CD NPs for the hydrophilic drug ciprofloxacin, showed 40 and 85% efficiency, respectively. The results indicated that the NPs have a high drug loading yield and a sustained drug releasing profile of the NPs, indicating that they can be used as a drug carrier. The photoluminescence spectral analysis of the NPs revealed their potentiality for use in bioimaging. Further analysis of the drug-loaded NPs (Fe3O4@LaF3:Eu,Ag@APTES@β-CD-ciprofloxacin) revealed, 100% microbial inhibition efficiency against Escherichia coli and Vibrio cholerae, and a minimum of 80% against Bacillus cereus.
Collapse
Affiliation(s)
- Sangita Kumari Swain
- Center of Excellence in Nanoscience and Technology for Development of Sensors (CoENSTds), Berhampur University, Ganjam, Odisha 760007 India
| | - Ganngam Phaomei
- Center of Excellence in Nanoscience and Technology for Development of Sensors (CoENSTds), Berhampur University, Ganjam, Odisha 760007 India
- Department of Chemistry, Berhampur University, Berhampur, Ganjam, Odisha 760007 India
| | - Sandip Kumar Dash
- Center of Excellence in Nanoscience and Technology for Development of Sensors (CoENSTds), Berhampur University, Ganjam, Odisha 760007 India
- Department of Zoology, Berhampur University, Berhampur, Ganjam, Odisha 760007 India
| | - Sukanta Kumar Tripathy
- Center of Excellence in Nanoscience and Technology for Development of Sensors (CoENSTds), Berhampur University, Ganjam, Odisha 760007 India
- Department of Physics, Berhampur University, Berhampur, Ganjam, Odisha 760007 India
| |
Collapse
|
3
|
Gopalaiah SB, Jayaseelan K. Analytical quality by design approach to develop an eco-friendly RP-HPLC method for estimation of irbesartan in chitosan polymeric nanoparticles: forced degradation studies and assessment of in vitro release mathematical modelling. RSC Adv 2024; 14:22169-22184. [PMID: 39005249 PMCID: PMC11243759 DOI: 10.1039/d4ra03952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Irbesartan is an angiotensin converting enzyme blocker, primarily utilized for the management of hypertension and the mitigation of diabetic nephropathy progression. The present study introduces rapid, robust and environmentally sustainable reverse phase high performance liquid chromatography (RP-HPLC) validated under the analytical quality by design (AQbD) framework according to ICH guidelines. Utilizing a central composite design, the method's systemic optimization was achieved, ensuring reproducibility and accuracy. Chromatographic separation was accomplished utilizing an ethanol and sodium acetate buffer (60 : 40 v/v) isocratic mobile phase system on a zorbax sb C18 column, with a flow rate of at 0.6 mL min-1. Studies on forced degradation outlined stability of irbesartan and its degradation processes, enhancing our understanding of its chemical robustness under varied conditions. Complementing the green chemistry paradigm, the method's environmental impact was critically assessed, affirming its alignment with sustainability objectives. The validated method proved pivotal in determining the percent entrapment and loading efficiency of the formulated nanoparticles and holds potential for application in biological matrices. Furthermore, the encapsulation of IRB within chitosan nanoparticles was explored to assess release kinetics and enhance bioavailability. This study not only advances the analytical sciences by merging eco-friendly practices with method development but also broadens the applicative landscape of HPLC methodologies in drug delivery research.
Collapse
Affiliation(s)
- Sinchana B Gopalaiah
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur, Chengalpattu District - 603203 Tamil Nadu India (+91) 9094903309
| | - Kavitha Jayaseelan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur, Chengalpattu District - 603203 Tamil Nadu India (+91) 9094903309
| |
Collapse
|
4
|
Adel Ali Youssef A, Hayder Abdelrahman M, Geweda MM, Varner C, Joshi PH, Ghonge M, Dudhipala N, Sulochana SP, Gadepalli RS, Majumdar S. Formulation and In Vitro-Ex vivo Evaluation of Cannabidiol and Cannabidiol-Valine-Hemisuccinate Loaded Lipid-Based Nanoformulations for Ocular Applications. Int J Pharm 2024; 657:124110. [PMID: 38604539 DOI: 10.1016/j.ijpharm.2024.124110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The goal of this investigation is to develop stable ophthalmic nanoformulations containing cannabidiol (CBD) and its analog cannabidiol-valine-hemisuccinate (CBD-VHS) for improved ocular delivery. Two nanoformulations, nanoemulsion (NE) and nanomicelles (NMC), were developed and evaluated for physicochemical characteristics, drug-excipient compatibility, sterilization, thermal analysis, surface morphology, ex-vivo transcorneal permeation, corneal deposition, and stability. The saturation solubility studies revealed that among the surfactants tested, Cremophor EL had the highest solubilizing capacity for CBD (23.3 ± 0.1 mg/mL) and CBD-VHS (11.2 ± 0.2 mg/mL). The globule size for the lead CBD formulations (NE and NMC) ranged between 205 and 270 nm while CBD-VHS-NMC formulation had a particle size of about 78 nm. The sterilized formulations, except for CBD-VHS-NMC at 40 °C, were stable for three months of storage (last time point tested). Release, in terms of CBD, in the in-vitro release/diffusion studies over 18 h, were faster from the CBD-VHS nanomicelles (38 %) compared to that from the CBD nanoemulsion (16 %) and nanomicelles (33 %). Transcorneal permeation studies revealed improvement in CBD permeability and flux with both formulations; however, a greater improvement was observed with the NMC formulation compared to the NE formulation. In conclusion, the nanoformulations prepared could serve as efficient topical ocular drug delivery platforms for CBD and its analog.
Collapse
Affiliation(s)
- Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Muna Hayder Abdelrahman
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mona M Geweda
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Corinne Varner
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Poorva H Joshi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mihir Ghonge
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Suresh P Sulochana
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Rama S Gadepalli
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
5
|
Liu H, Guo S, Wei S, Liu J, Tian B. Pharmacokinetics and pharmacodynamics of cyclodextrin-based oral drug delivery formulations for disease therapy. Carbohydr Polym 2024; 329:121763. [PMID: 38286540 DOI: 10.1016/j.carbpol.2023.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024]
Abstract
Oral drug administration has become the most common and preferred mode of disease treatment due to its good medication adherence and convenience. For orally administered drugs, the safety, efficacy, and targeting ability requirements have grown as disease treatment research advances. It is difficult to obtain prominent efficacy of traditional drugs simply via oral administration. Numerous studies have demonstrated that cyclodextrins (CDs) can improve the clinical applications of certain orally administered drugs by enhancing their water solubility and masking undesirable odors. Additionally, deeper studies have discovered that CDs can influence disease treatment by altering the drug pharmacokinetics (PK) or pharmacodynamics (PD). This review highlights recent research progress on the PK and PD effects of CD-based oral drug delivery in disease therapy. Firstly, the review describes the characteristics of current drug delivery modes in oral administration. Besides, we minutely summarized the different CD-containing drugs, focusing on the impact of CD-based alterations in PK or PD of orally administered drugs in treating diseases. Finally, we deeply discussed current challenges and future opportunities with regard to PK and PD of CD-based oral drug delivery formulations.
Collapse
Affiliation(s)
- Hui Liu
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Shijie Wei
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
6
|
Haji Ali B, Shirvaliloo M, Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Sargazi S, Sargazi S, Sheervalilou R, Rahman MM. Nanotechnology-Based Strategies for Extended-Release Delivery of Angiotensin Receptor Blockers (ARBs): A Comprehensive Review. Chem Biodivers 2023; 20:e202301157. [PMID: 37796134 DOI: 10.1002/cbdv.202301157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
There has been a significant shift in the perception of hypertension as an important contributor to the global disease burden. Approximately 6 % and 8 % of pregnancies are affected by hypertension, which can adversely affect the mother and the fetus. Furthermore, a hypertensive individual is at increased risk of developing kidney disease, arterial hardening, eye damage, and strokes. Using angiotensin receptor blockers (ARBs) is widespread in treating hypertension, heart failure, coronary artery disease, and diabetic nephropathy. Despite this, some ARBs have limited use due to their poor oral bioavailability and water solubility. To tackle this, a variety of nanoparticle (NP)-based systems, such as polymeric NPs (i. e., dendrimers), polymeric micelles, polymer-drug conjugates, lipid NPs, nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid NPs (SLNs), nanostructured lipid carriers (NLCs), carbon-based nanocarriers, inorganic NPs, and nanocrystals, have been recently developed for efficient delivery of losartan, Valsartan (Val), Olmesartan (OLM), Telmisartan (TEL), Candesartan, Eprosartan, Irbesartan, and Azilsartan to target cells. This review article provides a literature-based comparison of the various classes of ARBs, their mechanisms of action, and an overview of the nanoformulations developed for ARB delivery and successfully applied to managing hypertension, diabetic complications, and other conditions.
Collapse
Affiliation(s)
- Bahareh Haji Ali
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 9453155166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir, 35100, Turkey
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran, Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
7
|
Halder J, Mahanty R, Rajwar TK, Rai VK, Kar B, Ghosh G, Rath G. Nanofibers of Glycyrrhizin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex: Enhanced Solubility Profile and Anti-inflammatory Effect of Glycyrrhizin. AAPS PharmSciTech 2023; 24:196. [PMID: 37783948 DOI: 10.1208/s12249-023-02662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Despite having a wide range of therapeutic advantages, glycyrrhizin (GL) has few commercial applications due to its poor aqueous solubility. In this study, we combined the benefits of hydroxypropyl β-cyclodextrin (HP-βCD) supramolecular inclusion complexes and electrospun nanofibers to improve the solubility and therapeutic potential of GL. A molecular inclusion complex containing GL and HP-βCD was prepared by lyophilization at a 1:2 molar ratio. GL and hydroxypropyl β-cyclodextrin inclusion complexes were also incorporated into hyaluronic acid (HA) nanofibers. Prepared NF was analyzed for physical, chemical, thermal, and pharmaceutical properties. Additionally, a rat model of carrageenan-induced hind paw edema and macrophage cell lines was used to evaluate the anti-inflammatory activity of GL-HP-βCD NF. The DSC and XRD analyses clearly showed the amorphous state of GL in nanofibers. In comparison to pure GL, GL-HP-βCD NF displayed improved release (46.6 ± 2.16% in 5 min) and dissolution profiles (water dissolvability ≤ 6 s). Phase solubility results showed a four-fold increase in GL solubility in GL-HP-βCD NF. In vitro experiments on cell lines showed that inflammatory markers like IL-1β, TNF-α, and IL-6 were significantly lower in GL-HP-βCD NF compared to pure GL (p < 0.01 and p < 0.05). According to in vivo results, the prepared nanofiber exhibits a better anti-inflammatory effect than pure GL (63.4% inhibition vs 53.7% inhibition). The findings presented here suggested that GL-HP-βCD NF could serve as a useful strategy for improving the therapeutic effects of GL.
Collapse
Affiliation(s)
- Jitu Halder
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Ritu Mahanty
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
8
|
Munnangi SR, Youssef AAA, Narala N, Lakkala P, Vemula SK, Alluri R, Zhang F, Repka MA. Continuous Manufacturing of Solvent-Free Cyclodextrin Inclusion Complexes for Enhanced Drug Solubility via Hot-Melt Extrusion: A Quality by Design Approach. Pharmaceutics 2023; 15:2203. [PMID: 37765172 PMCID: PMC10536280 DOI: 10.3390/pharmaceutics15092203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional cyclodextrin complexation enhances the solubility of poorly soluble drugs but is solvent-intensive and environmentally unfavorable. This study evaluated solvent-free hot-melt extrusion (HME) for forming cyclodextrin inclusion complexes to improve the solubility and dissolution of ibuprofen (IBU). Molecular docking confirmed IBU's hosting in Hydroxypropyl-β-cyclodextrin (HPβ-CD), while phase solubility revealed its complex stoichiometry and stability. In addition, an 11 mm twin-screw co-rotating extruder with PVP VA-64 as an auxiliary substance aided the complex formation and extrusion. Using QbD and the Box-Behnken design, we studied variables (barrel temperature, screw speed, and polymer concentration) and their impact on solubility and dissolution. The high polymer concentration and high screw speeds positively affected the dependent variables. However, higher temperatures had a negative effect. The lowest barrel temperature set near the Tg of the polymer, when combined with high polymer concentrations, resulted in high torques in HME and halted the extrusion process. Therefore, the temperature and polymer concentration should be selected to provide sufficient melt viscosities to aid the complex formation and extrusion process. Studies such as DSC and XRD revealed the amorphous conversion of IBU, while the inclusion complex formation was demonstrated by ATR and NMR studies. The dissolution of ternary inclusion complexes (TIC) produced from HME was found to be ≥85% released within 30 min. This finding implied the high solubility of IBU, according to the US FDA 2018 guidance for highly soluble compounds containing immediate-release solid oral dosage forms. Overall, the studies revealed the effect of various process parameters on the formation of CD inclusion complexes via HME.
Collapse
Affiliation(s)
- Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (S.R.M.); (A.A.A.Y.); (N.N.); (P.L.); (S.K.V.); (R.A.)
- Pii Center for Pharmaceutical Technology, The University of Mississippi, Oxford, MS 38677, USA
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (S.R.M.); (A.A.A.Y.); (N.N.); (P.L.); (S.K.V.); (R.A.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (S.R.M.); (A.A.A.Y.); (N.N.); (P.L.); (S.K.V.); (R.A.)
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (S.R.M.); (A.A.A.Y.); (N.N.); (P.L.); (S.K.V.); (R.A.)
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (S.R.M.); (A.A.A.Y.); (N.N.); (P.L.); (S.K.V.); (R.A.)
| | - Rohit Alluri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (S.R.M.); (A.A.A.Y.); (N.N.); (P.L.); (S.K.V.); (R.A.)
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Micheal A. Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (S.R.M.); (A.A.A.Y.); (N.N.); (P.L.); (S.K.V.); (R.A.)
- Pii Center for Pharmaceutical Technology, The University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
9
|
Joshi PH, Youssef AAA, Ghonge M, Varner C, Tripathi S, Dudhipala N, Majumdar S. Gatifloxacin Loaded Nano Lipid Carriers for the Management of Bacterial Conjunctivitis. Antibiotics (Basel) 2023; 12:1318. [PMID: 37627738 PMCID: PMC10451836 DOI: 10.3390/antibiotics12081318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial conjunctivitis (BC) entails inflammation of the ocular mucous membrane. Early effective treatment of BC can prevent the spread of the infection to the intraocular tissues, which could lead to bacterial endophthalmitis or serious visual disability. In 2003, gatifloxacin (GTX) eyedrops were introduced as a new broad-spectrum fluoroquinolone to treat BC. Subsequently, GTX use was extended to other ocular bacterial infections. However, due to precorneal loss and poor ocular bioavailability, frequent administration of the commercial eyedrops is necessary, leading to poor patient compliance. Thus, the goal of the current investigation was to formulate GTX in a lipid-based drug delivery system to overcome the challenges with the existing marketed eyedrops and, thus, improve the management of bacterial conjunctivitis. GTX-NLCs and SLNs were formulated with a hot homogenization-probe sonication method. The lead GTX-NLC formulation was characterized and assessed for in vitro drug release, antimicrobial efficacy (against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa), and ex vivo permeation. The lead formulation exhibited desired physicochemical characteristics, an extended release of GTX over a 12 h period, and was stable over three months at the three storage conditions (refrigerated, room temperature, and accelerated). The transcorneal flux and permeability of GTX from the GTX-NLC formulation were 5.5- and 6.0-fold higher in comparison to the commercial eyedrops and exhibited a similar in vitro antibacterial activity. Therefore, GTX-NLCs could serve as an alternative drug delivery platform to improve treatment outcomes in BC.
Collapse
Affiliation(s)
- Poorva H. Joshi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (P.H.J.); (A.A.A.Y.); (M.G.); (C.V.); (N.D.)
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (P.H.J.); (A.A.A.Y.); (M.G.); (C.V.); (N.D.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mihir Ghonge
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (P.H.J.); (A.A.A.Y.); (M.G.); (C.V.); (N.D.)
| | - Corinne Varner
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (P.H.J.); (A.A.A.Y.); (M.G.); (C.V.); (N.D.)
| | - Siddharth Tripathi
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA;
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (P.H.J.); (A.A.A.Y.); (M.G.); (C.V.); (N.D.)
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (P.H.J.); (A.A.A.Y.); (M.G.); (C.V.); (N.D.)
- Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
10
|
Yu C, Naeem A, Liu Y, Guan Y. Ellagic Acid Inclusion Complex-Loaded Hydrogels as an Efficient Controlled Release System: Design, Fabrication and In Vitro Evaluation. J Funct Biomater 2023; 14:jfb14050278. [PMID: 37233388 DOI: 10.3390/jfb14050278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Oxidants play a crucial role in the development of oxidative stress, which is linked to disease progression. Ellagic acid is an effective antioxidant with applications in the treatment and prevention of several diseases, since it neutralizes free radicals and reduces oxidative stress. However, it has limited application due to its poor solubility and oral bioavailability. Since ellagic acid is hydrophobic, it is difficult to load it directly into hydrogels for controlled release applications. Therefore, the purpose of this study was to first prepare inclusion complexes of ellagic acid (EA) with hydroxypropyl-β-cyclodextrin and then load them into carbopol-934-grafted-2-acrylamido-2-methyl-1-propane sulfonic acid (CP-g-AMPS) hydrogels for orally controlled drug delivery. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) were used to validate ellagic acid inclusion complexes and hydrogels. There was slightly higher swelling and drug release at pH 1.2 (42.20% and 92.13%) than at pH 7.4 (31.61% and 77.28%), respectively. Hydrogels had high porosity (88.90%) and biodegradation (9.2% per week in phosphate-buffered saline). Hydrogels were tested for their antioxidant properties in vitro against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Additionally, the antibacterial activity of hydrogels was demonstrated against Gram-positive bacterial strains (Staphylococcus aureus and Escherichia coli) and Gram-negative bacterial strains (Pseudomonas aeruginosa).
Collapse
Affiliation(s)
- Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, 1688 Meiling Road, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, 1688 Meiling Road, Nanchang 330006, China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
11
|
Kolimi P, Narala S, Youssef AAA, Nyavanandi D, Dudhipala N. A systemic review on development of mesoporous nanoparticles as a vehicle for transdermal drug delivery. Nanotheranostics 2023; 7:70-89. [PMID: 36593800 PMCID: PMC9760363 DOI: 10.7150/ntno.77395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Recent advances in drug delivery technologies utilizing a variety of carriers have resulted in a paradigm shift in the current approach to diagnosis and therapy. Mesoporous silica nanoparticles (MSNs) were developed in response to the need for materials with high thermal, chemical, and mechanical properties. The synthesis, ease of surface functionalization, tunable pore size, large surface area, and biocompatibility of MSNs make them useful in a variety of biomedical applications such as drug delivery, theranostics, and stem cell research. In addition, MSNs have a high capability of delivering actives ranging from small molecules such as drugs and amino acids to larger peptides, vaccines, and antibodies in general. Moreover, MSN-based transdermal delivery has sparked a lot of interest because of the increase in drug stability, permeation, and ease of functionalization. The functionalization of MSNs plays an important role in the efficient delivery of therapeutic agents in a highly controlled manner. This review introduced dermal and transdermal drug delivery systems, explained the anatomy of the skin, and summarized different barriers that affect the transdermal delivery of many therapeutic agents. In addition, the fundamentals of MSNs together with their physicochemical properties, synthesis approaches, raw materials used in their fabrication, and factors affecting their physicochemical properties will be covered. Moreover, the applications of MSNs in dermal and transdermal delivery, the biocompatibility of MSNs in terms of toxicity and safety, and biodistribution will be explained with the help of a detailed literature review. The review is covering the current and future perspectives of MSNs in the pharmaceutical field with therapeutic applications.
Collapse
Affiliation(s)
- Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS - 38677, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS - 38677, USA
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS - 38677, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS - 38677, USA
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS - 38677, USA
| |
Collapse
|
12
|
Dudhipala N, Ettireddy S, Youssef AAA, Puchchakayala G. Development and In vivo Pharmacokinetic and Pharmacodynamic Evaluation of an Oral Innovative Cyclodextrin Complexed Lipid Nanoparticles of Irbesartan Formulation for Enhanced Bioavailability. Nanotheranostics 2023; 7:117-127. [PMID: 36593793 PMCID: PMC9760361 DOI: 10.7150/ntno.78102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Irbesartan (IR) is used in the treatment of hypertension, heart failure, and nephropathy in Type II diabetes. IR bioavailability is limited by poor solubility and presystemic metabolism. In our previous investigations, cyclodextrin (HPβCD) complexed solid lipid nanoparticles (SLNs) of IR were prepared, optimized, and characterized. The current study aimed to confirm the reproducibility of the previous methodology and to evaluate the pharmacokinetic (PK) and pharmacodynamic (PD) performance of the selected lead formulations in an experimental animal model. Methods: SLNs were prepared by hot homogenization followed by probe sonication with IR/HPβCD inclusion complex loaded into a solid lipid (Dynasan 112). SLNs were evaluated for physical characteristics, drug content, entrapment efficiency, in vitro release profile, and surface morphology. The pharmacokinetic and pharmacodynamic behavior of the SLNs were evaluated in Wistar rats. Results: Photon correlation spectroscopy, drug content, entrapment efficiency, and dissolution studies results were reproducible and consistent with our earlier investigation. PK studies showed 2.1-, 6.6-, and 9.9-fold improvement in the relative oral bioavailability of the drug from IR-HPβCD, IR-SLN, and IR-HPβCD-SLN formulations, respectively compared to IR suspension. However, IR-HPβCD-SLNs showed 1.5- and 4.7-fold improvement in the relative oral bioavailability of the drug compared to IR-SLN and IR-HPβCD formulations, respectively. PD studies in hypertensive Wistar rats showed a good control over systolic blood pressure for 48 h for SLN formulations compared to 2 h for IR suspension. However, the IR-HPβCD inclusion complex exhibited immediate antihypertensive activity (0.5 h) with a period of systolic blood pressure control similar to IR suspension. Conclusions: The current approach exhibited improved oral bioavailability along with improved and prolonged pharmacodynamic effect.
Collapse
Affiliation(s)
- Narendar Dudhipala
- Department of Pharmaceutics, Vaagdevi Pharmacy College, Warangal, Telangana, India - 506005.,Synapse Life Sciences, Warangal, Telangana, India - 506001.,✉ Corresponding author: Dr. Narendar Dudhipala M.Pharm., Ph.D.; Department of Pharmaceutics, Vaagdevi College of Pharmacy, Warangal 50 6005, Telangana State, India.
| | | | - Ahmed Adel Ali Youssef
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Goverdhan Puchchakayala
- Department of Pharmaceutics, Vaagdevi Pharmacy College, Warangal, Telangana, India - 506005.,Synapse Life Sciences, Warangal, Telangana, India - 506001
| |
Collapse
|
13
|
Design of Topical Moxifloxacin Mucoadhesive Nanoemulsion for the Management of Ocular Bacterial Infections. Pharmaceutics 2022; 14:pharmaceutics14061246. [PMID: 35745818 PMCID: PMC9228176 DOI: 10.3390/pharmaceutics14061246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Ocular bacterial infections can lead to serious visual disability without proper treatment. Moxifloxacin (MOX) has been approved by the US Food and Drug Administration as a monotherapy for ocular bacterial infections and is available commercially as an ophthalmic solution (0.5% w/v). However, precorneal retention, drainage, and low bioavailability remain the foremost challenges associated with current commercial eyedrops. With this study, we aimed to design a MOX-loaded nanoemulsion (NE; MOX-NE) with mucoadhesive agents (MOX-NEM) to sustain MOX release, as well as to overcome the potential drawbacks of the current commercial ophthalmic formulation. MOX-NE and MOX-NEM formulations were prepared by hot homogenization coupled with probe sonication technique and subsequently characterized. The lead formulations were further evaluated for in vitro release, ex vivo transcorneal permeation, sterilization, and antimicrobial efficacy studies. Commercial MOX ophthalmic solution was used as a control. The lead formulations showed the desired physicochemical properties and viscosity. All lead formulations showed sustained release profiles a period of more than 12 h. Filtered and autoclaved lead formulations were stable for one month (the last time point tested) under refrigeration and at room temperature. Ex vivo transcorneal permeation studies revealed a 2.1-fold improvement in MOX permeation of the lead MOX-NE formulation compared with Vigamox® eyedrops. However, MOX-NEM formulations showed similar flux and permeability coefficients to those of Vigamox® eyedrops. The lead formulations showed similar in vitro antibacterial activity as the commercial eyedrops and crude drug solution. Therefore, MOX-NE and MOX-NEM formulations could serve as effective delivery vehicles for MOX and could improve treatment outcomes in different ocular bacterial infections.
Collapse
|
14
|
Marathe S, Shadambikar G, Mehraj T, Sulochana SP, Dudhipala N, Majumdar S. Development of α-Tocopherol Succinate-Based Nanostructured Lipid Carriers for Delivery of Paclitaxel. Pharmaceutics 2022; 14:1034. [PMID: 35631620 PMCID: PMC9145488 DOI: 10.3390/pharmaceutics14051034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 12/21/2022] Open
Abstract
The management of retinoblastoma (RB) involves the use of invasive treatment regimens. Paclitaxel (PTX), an effective antineoplastic compound used in the treatment of a wide range of malignant tumors, poses treatment challenges due to systemic toxicity, rapid elimination, and development of resistance. The goal of this work was to develop PTX-loaded, α-tocopherol succinate (αTS)-based, nanostructured lipid carrier (NLCs; αTS-PTX-NLC) and PEGylated αTS-PTX-NLC (αTS-PTX-PEG-NLC) to improve ocular bioavailability. The hot homogenization method was used to prepare the NLCs, and repeated measures ANOVA analysis was used for formulation optimization. αTS-PTX-NLC and αTS-PTX-PEG-NLC had a mean particle size, polydispersity index and zeta potential of 186.2 ± 3.9 nm, 0.17 ± 0.03, −33.2 ± 1.3 mV and 96.2 ± 3.9 nm, 0.27 ± 0.03, −39.15 ± 3.2 mV, respectively. The assay and entrapment efficiency of both formulations was >95.0%. The NLC exhibited a spherical shape, as seen from TEM images. Sterilized (autoclaved) formulations were stable for up to 60 days (last time point checked) under refrigerated conditions. PTX-NLC formulations exhibited an initial burst release and 40% drug release, overall, in 48 h. The formulations exhibited desirable physicochemical properties and could lead to an effective therapeutic option in the management of RB.
Collapse
Affiliation(s)
- Sushrut Marathe
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Gauri Shadambikar
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Tabish Mehraj
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Suresh P. Sulochana
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|