1
|
Luo F, Zhang J, Miao Y, Wu D, Shen H, Lu M. Paeoniflorin regulates microglia-astrocyte crosstalk, inhibits inflammatory response, and alleviates neuropathic pain through HSP90AA1/HMGB1 signaling pathway. Int J Biochem Cell Biol 2024; 176:106675. [PMID: 39395636 DOI: 10.1016/j.biocel.2024.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Given the unclear, complex pathogenesis of neuropathic pain and the potential of paeoniflorin in relieving neuropathic pain, this study aimed to further clarify the therapeutic effect of paeoniflorin on neuropathic pain and to preliminarily explore the possible protective mechanisms of paeoniflorin. Chronic constrictive injury-induced Sprague Dawley rats and lipopolysaccharide-induced BV-2 cells were used for in vivo and in vitro experiments, respectively. The exosome uptake assay of mouse astrocytes (PKH-67 fluorescent labeling) and the mechanical nociceptive assay (the von Frey fibrous filaments) were performed. The effects of paeoniflorin and its downstream mechanisms on microglial and astrocyte activation, inflammation-associated proteins and exosome marker were determined. Paeoniflorin alleviated mechanical abnormal pain, decreased levels of ionized calcium binding adapter molecule-1 (Iba-1), glial fibrillary acidic protein, Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1, inflammatory factor) and High Mobility Group Box 1 (HMGB1, inflammation-related protein), and inhibited neuronal apoptosis in chronic constrictive injury rats or lipopolysaccharide-induced BV-2 cells. However, these effects were offset by HSP90AA1 overexpression in lipopolysaccharide-induced BV-2 cells. Exosomes of BV-2 cells could be absorbed by mouse astrocytes. In addition, HSP90AA1 overexpression reversed the effects of paeoniflorin on HMGB1 expression and inflammatory factors and proteins in mouse astrocytes co-cultured with exosome. Collectively, paeoniflorin alleviates neuropathic pain and inhibits inflammatory responses in chronic constrictive injury by modulating microglia-astrocyte crosstalk through HSP90AA1/HMGB1 pathways, which further evidences the potential of paeoniflorin in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Fengqin Luo
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), China
| | - Juan Zhang
- Department of Pain, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), China
| | - Yunfei Miao
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), China
| | - Danhong Wu
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), China
| | - Hongxia Shen
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), China
| | - Man Lu
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), China.
| |
Collapse
|
2
|
Mazzone GL, Coronel MF, Mladinic M, Sámano C. An update to pain management after spinal cord injury: from pharmacology to circRNAs. Rev Neurosci 2023; 34:599-611. [PMID: 36351309 DOI: 10.1515/revneuro-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 08/04/2023]
Abstract
Neuropathic pain (NP) following a spinal cord injury (SCI) is often hard to control and therapies should be focused on the physical, psychological, behavioral, social, and environmental factors that may contribute to chronic sensory symptoms. Novel therapeutic treatments for NP management should be based on the combination of pharmacological and nonpharmacological options. Some of them are addressed in this review with a focus on mechanisms and novel treatments. Several reports demonstrated an aberrant expression of non-coding RNAs (ncRNAs) that may represent key regulatory factors with a crucial role in the pathophysiology of NP and as potential diagnostic biomarkers. This review analyses the latest evidence for cellular and molecular mechanisms associated with the role of circular RNAs (circRNAs) in the management of pain after SCI. Advantages in the use of circRNA are their stability (up to 48 h), and specificity as sponges of different miRNAs related to SCI and nerve injury. The present review discusses novel data about deregulated circRNAs (up or downregulated) that sponge miRNAs, and promote cellular and molecular interactions with mRNAs and proteins. This data support the concept that circRNAs could be considered as novel potential therapeutic targets for NP management especially after spinal cord injuries.
Collapse
Affiliation(s)
- Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - María F Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Miranda Mladinic
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Cynthia Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Avenida Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa. Alcaldía Cuajimalpa de Morelos, C.P. 05348, Ciudad de México, México
| |
Collapse
|
3
|
Bajaj S, Gupta S. Nutraceuticals: A Promising Approach Towards Diabetic Neuropathy. Endocr Metab Immune Disord Drug Targets 2023; 23:581-595. [PMID: 36263482 DOI: 10.2174/1871530323666221018090024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Various nutraceuticals from different sources have various beneficial actions and have been reported for many years. The important findings from the research conducted using various nutraceuticals exhibiting significant physiological and pharmacological activities have been summarized. METHODS An extensive investigation of literature was done using several worldwide electronic scientific databases like PUBMED, SCOPUS, Science Direct, Google Scholar, etc. The entire manuscript is available in the English language that is used for our various compounds of interest. These databases were thoroughly reviewed and summarized. RESULTS Nutraceuticals obtained from various sources play a vital role in the management of peripheral neuropathy associated with diabetes. Treatment with nutraceuticals has been beneficial as an alternative in preventing the progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DPN. CONCLUSION Nutraceuticals obtained from different sources like a plant, an animal, and marine have been properly utilized for the safety of health. In our opinion, this review could be of great interest to clinicians, as it offers a complementary perspective on the management of DPN. Trials with a well-defined patient and symptom selection have shown robust pharmacological design as pivotal points to let these promising compounds become better accepted by the medical community.
Collapse
Affiliation(s)
- Sakshi Bajaj
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana-133207, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana-133207, India
| |
Collapse
|
4
|
Tan Y, Wang Z, Liu T, Gao P, Xu S, Tan L. RNA interference-mediated silencing of DNA methyltransferase 1 attenuates neuropathic pain by accelerating microglia M2 polarization. BMC Neurol 2022; 22:376. [PMID: 36183073 PMCID: PMC9526327 DOI: 10.1186/s12883-022-02860-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background DNA methyltransferase 1 (DNMT1) exerts imperative functions in neuropathic pain (NP). This study explored the action of RNA interference-mediated DNMT1 silencing in NP by regulating microglial M2 polarization. Methods NP rat models were established using chronic constriction injury (CCI) and highly aggressive proliferating immortalized (HAPI) microglia were treated with lipopolysaccharide (LPS) to induce microglia M1 polarization, followed by treatment of DNMT1 siRNA or si-DNMT1/oe-DNMT1, respectively. The pain threshold of CCI rats was assessed by determining mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). Levels of inflammatory factors (TNF-α/IL-1β/IL-6/IL-10) and DNMT1 in rat L4-L6 spinal cord samples and HAPI cells were measured using ELISA, RT-qPCR, and Western blot. iNOS and Arg-1 mRNA levels were measured via RT-qPCR. DNMT1, M1 marker (iNOS), and M2 marker (Arg-1) levels in microglia of CCI rats were detected by immunofluorescence. Percentages of M1 microglia phenotype (CD16) and M2 microglia phenotype (CD206) were detected by flow cytometry. The phosphorylation of PI3K/Akt pathway-related proteins was determined by Western blot. Results CCI rats exhibited diminished MWT and TWL values, increased pro-inflammatory cytokines, and decreased anti-inflammatory cytokine IL-10. Additionally, DNMT1 was upregulated in CCI rat microglia. DNMT1 siRNA alleviated CCI-induced NP and facilitated M2 polarization of microglia in CCI rats. DNMT1 knockdown inhibited LPS-induced M1 polarization of HAPI cells and promoted M2 polarization by blocking the PI3K/Akt pathway, but DNMT1 overexpression inhibited the M1-to-M2 polarization of microglia. Conclusion RNA interference-mediated DNMT1 silencing accelerates microglia M2 polarization by impeding the PI3K/Akt pathway, thereby alleviating CCI-induced NP. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02860-6.
Collapse
Affiliation(s)
- Ying Tan
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China.
| | - Zongjiang Wang
- Department of Spinal Surgery, Sunshine Union Hospital, Weifang, 261041, China
| | - Tao Liu
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China
| | - Peng Gao
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China
| | - Shitao Xu
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China
| | - Lei Tan
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China.
| |
Collapse
|
5
|
Li X, Wang Q, Wu D, Zhang DW, Li SC, Zhang SW, Chen X, Li W. The effect of a novel anticonvulsant chemical Q808 on gut microbiota and hippocampus neurotransmitters in pentylenetetrazole-induced seizures in rats. BMC Neurosci 2022; 23:7. [PMID: 35114941 PMCID: PMC8812211 DOI: 10.1186/s12868-022-00690-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background The gut microbiota can modulate brain function and behavior and is increasingly recognized as an important factor in mediating the risk of epilepsy and the effects of seizure interventions. Drug therapy is one of the factors that influence the composition of the intestinal microbiota. Q808 is an innovative chemical with strong anticonvulsant activity and low neurotoxicity. However, studies evaluating the effect of Q808 on gut microbial communities are lacking. In this study, we aimed to evaluate the anticonvulsant activity of Q808 on a pentylenetetrazol (PTZ)—induced seizure model and analyze and compare the intestinal microbiota composition of non-PTZ vehicle control group, the PTZ-induced seizure model rats with and without Q808, through 16S rDNA sequencing. Neurotransmitter levels in the hippocampus were quantitatively estimated using HPLC–MS. Results The results suggest that Q808 effectively alleviates seizures in chronic PTZ-kindled model rats. Additionally, based on the analyzed abundance of the gut microbiota, dysbacteriosis of model rats was found to be corrected after Q808 treatment at the phylum level. The unique bacterial taxa (e.g., Lactobacillus) that are associated with acetylcholine production, were significantly increased. Several short-chain fatty acids (SCFAs)-producing bacteria, including Roseburia, Alloprevptella, Prevotellaceae_NK3B31_group, Prevotellaceae_UCG-001, and Prevotella_9, were enriched. In the hippocampus, the contents of acetylcholine increased, whereas the levels of 3-methoxytyramine, glutamine, and 5-hydroxyindole acetic acid (5-HIAA) decreased after Q808 treatment. Conclusions This study demonstrates that Q808 can be used to remodel the dysbiosis of the gut microbiome and influence neurotransmitter levels in the hippocampus of PTZ-induced seizure model rats. We hope that these novel findings prompt further research on the interaction between gut microbiota and seizures and the mechanism of Q808. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00690-3.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qing Wang
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin, China
| | - Di Wu
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin, China
| | - Dian-Wen Zhang
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin, China
| | | | - Si-Wei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| | - Wei Li
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin, China.
| |
Collapse
|
6
|
Anaeigoudari A. Antidepressant and anti-nociceptive effects of Nigella sativa and its main constituent, thymoquinone: A literature review. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.363875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|