1
|
Balasubramanian M, Girija S. Overexpression of AtMYB12 transcription factor simultaneously enhances quercetin-dependent metabolites in radish callus. Heliyon 2024; 10:e27053. [PMID: 38660267 PMCID: PMC11039974 DOI: 10.1016/j.heliyon.2024.e27053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/10/2024] [Accepted: 02/22/2024] [Indexed: 04/26/2024] Open
Abstract
The study aimed to enhance quercetin production in radish by optimizing Agrobacterium tumefaciens-mediated in-planta transformation. This protocol involved infecting radish seed embryo axis with A. tumefaciens EHA105 strain carrying the 35S::AtMYB12. Radish seeds were infected with the Agrobacterium suspension (0.8 OD600) for 30 min, followed by sonication for 60 s and vacuum infiltration for 90 s at 100 mm Hg. A 3-day co-cultivation in Murashige and Skoog medium with 150 μM acetosyringone yielded a transformation efficiency of 59.6% and a transgenic callus induction rate of 32.3%. Transgenic plant and callus lines were confirmed by GUS histochemical assay, PCR, and qRT-PCR. The transgenic lines showed an increased expression of flavonoid pathway genes (AtMYB12, CHS, F3H, and FLS) and antioxidant genes (GPX, APX, CAT, and SOD) compared to WT plants. Overexpression of AtMYB12 in transgenic callus increased enzyme activity of phenylalanine ammonia lyase, catalase, and ascorbate peroxidase. In half-strength MS medium with 116.8 mM sucrose, the highest growth index (7.63) was achieved after 20 days. In AtMYB12 overexpressed callus lines, phenolic content (357.31 mg g-1 dry weight), flavonoid content (463 mg g-1 dry weight), and quercetin content (48.24 mg g-1 dry weight) increased significantly by 9.41-fold. Micro-wounding, sonication, and vacuum infiltration improved in-planta transformation in radishes. These high-quercetin-content transgenic callus lines hold promise as valuable sources of flavonoids.
Collapse
Affiliation(s)
- Muthusamy Balasubramanian
- Metabolic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shanmugam Girija
- Metabolic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| |
Collapse
|
2
|
Wang D, Liu G, Yang J, Shi G, Niu Z, Liu H, Xu N, Wang L. Integrated metabolomics and transcriptomics reveal molecular mechanisms of corolla coloration in Rhododendron dauricum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108438. [PMID: 38367387 DOI: 10.1016/j.plaphy.2024.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Rhododendron dauricum L. is a semi-evergreen shrub of high ornamental and medicinal values in Northeast China. To study the molecular mechanisms of corolla coloration in R. dauricum, integrated metabolomics and transcriptomics were performed in R. dauricum featuring purple flowers and R. dauricum var. album featuring white flowers. Comparative metabolomics revealed 25 differential metabolites in the corolla of the two distinct colors, enriched in flavonoids that are closely related to pigmentation in the flower. Differential analysis of the transcriptomics data revealed enrichment of structural genes for flavonoid biosynthesis (99 up- and 58 down-regulated, respectively, in purple corollas compared to white ones). Significantly, CHS and CHI, key genes in the early stage of anthocyanin synthesis, as well as F3H, F3'H, F3'5'H, DFR, ANS, and UFGT that promote the accumulation of pigments in the late stage of anthocyanin synthesis, were up-regulated in R. dauricum (purple color). In R. dauricum var. album, FLS were key genes determining the accumulation of flavonols. In addition, transcriptome-metabolome correlation analysis identified 16 R2R3 MYB transcription factors (out of 83 MYBs) that are important for corolla coloration. Five negative and four positive MYBs were further identified by integrated transcriptional and metabolic network analysis, revealing a key role of MYBA and MYB12 in regulating anthocyanins and flavonols, respectively. Moreover, we validated the function of RdMYBA by creating stable transgenic plants and found that RdMYBA promotes anthocyanin biosynthesis. In summary, we systematically characterized the transcriptome and metabolome of two R. dauricum cultivars with different flower colors and identified MYBs as key factors in modulating corolla coloration.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Forestry, Heilongjiang Academy of Forestry, Harbin, 150081, China
| | - Guiling Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Juan Yang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Gongfa Shi
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Zhaoqian Niu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Huijun Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Nuo Xu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Ling Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Yin Z, Liu J, Zhao H, Chu X, Liu H, Ding X, Lu C, Wang X, Zhao X, Li Y, Ding X. SlMYB1 regulates the accumulation of lycopene, fruit shape, and resistance to Botrytis cinerea in tomato. HORTICULTURE RESEARCH 2023; 10:uhac282. [PMID: 36818368 PMCID: PMC9930398 DOI: 10.1093/hr/uhac282] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/07/2022] [Indexed: 05/20/2023]
Abstract
Fruit lycopene, shape, and resistance are essential traits in vegetables whose final product is fruit, and they are also closely related to and strictly regulated by multiple transcription factors. Lycopene, which cannot be synthesized by the human body and can only be ingested from the outside, was important in maintaining human health. During fruit ripening and post-harvest, tomato plants face a variety of biotic or abiotic stresses, which might inflict great damage to fruit quality due to its flat shape and pointed tip during storage and transportation. Therefore, there is an urgent need for key molecular switches to simultaneously improve fruit lycopene and resistance to biotic stress during ripening. Here, we identified the MYB transcription factor SlMYB1 in tomato plants which could bind to the promoters of lycopene synthesis-related genes, SlLCY1, SlPSY2, and the pathogen-related gene SlPR5 directly, to regulate the fruit lycopene and resistance to Botrytis cinerea in tomato. In addition to regulating lycopene synthesis, SlMYB1 also regulates the content of soluble sugar, soluble protein and flavonoid in tomato. What's more, SlMYB1 could regulate the tomato fruit shape, making it smoother or flatter to prevent skin damage caused by vibration on fruits. RNA sequencing (RNA-seq) further showed that SlMYB1 fruit-specific expression lines had multiple differentially expressed genes compared with those from wild-type plants, suggesting that SlMYB1 might have multiple roles in fruit nutritional quality control and resistance to stresses, which is a rare occurrence in previous studies. In summary, our results revealed that SlMYB1 was an essential multi-functional transcription factor that could regulate the lycopene and resistance to Botrytis cinerea, and change the shape of fruit in tomato plants.
Collapse
Affiliation(s)
- Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jiazong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiaomeng Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Haoqi Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiangyu Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xinyu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Academy of Life Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, China
- State Key Laboratory of Crop Biology, College of Academy of Life Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, China
| |
Collapse
|
4
|
Pineda-Hidalgo KV, Flores-Leyva B, Salazar-Salas NY, Chávez-Ontiveros J, Garzon-Tiznado JA, Sánchez-López J, Delgado-Vargas F, López-Valenzuela JA. Expression of MYB transcription factors and target genes and its association with phenolic content and antioxidant activity of selected Solanum lycopersicum var. cerasiforme accessions from Mexico. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2144951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | - Brianda Flores-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Nancy Y. Salazar-Salas
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | | | - José A. Garzon-Tiznado
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | | | | | | |
Collapse
|
5
|
Coates RJ, Young MT, Scofield S. Optimising expression and extraction of recombinant proteins in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1074531. [PMID: 36570881 PMCID: PMC9773421 DOI: 10.3389/fpls.2022.1074531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are of paramount importance for research, industrial and medical use. Numerous expression chassis are available for recombinant protein production, and while bacterial and mammalian cell cultures are the most widely used, recent developments have positioned transgenic plant chassis as viable and often preferential options. Plant chassis are easily maintained at low cost, are hugely scalable, and capable of producing large quantities of protein bearing complex post-translational modification. Several protein targets, including antibodies and vaccines against human disease, have been successfully produced in plants, highlighting the significant potential of plant chassis. The aim of this review is to act as a guide to producing recombinant protein in plants, discussing recent progress in the field and summarising the factors that must be considered when utilising plants as recombinant protein expression systems, with a focus on optimising recombinant protein expression at the genetic level, and the subsequent extraction and purification of target proteins, which can lead to substantial improvements in protein stability, yield and purity.
Collapse
Affiliation(s)
| | | | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|