1
|
Lazuardi M, Anjani QK, Budiatin AS, Restiadi TI. Efficacy of quercetin-like compounds from the mistletoe plant of Dendrophthoe pentandra L. Miq, as oral random blood sugar lowering treatment in diabetic rats. Vet Q 2024; 44:1-14. [PMID: 38943615 PMCID: PMC11216255 DOI: 10.1080/01652176.2024.2372090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
Background: Mistletoe is an herb that grows on duku plants (Lancium demosticum) and is known as benalu duku (BD) in Indonesia. It is predicted to have benefits such as anticancer or antiviral properties, and it is also thought to have anti-diabetic pharmacological activity. Quercetin-like compounds (QLCs) are secondary metabolites with antidiabetic activity that are expected to lower blood sugar levels in animals after oral administration. Objective: This study aimed to analyze the ability of QLCs to reduce random blood sugar levels using experimental animals as clinical models. Material and methods: The research method used was exploratory, which used a before-after test model, and observations were made on the random blood sugar levels after treatment. Secondary metabolites were extracted from BD leaves, which were then screened. Diabetes was induced in 30 rats (Rattus norvegicus) by the administration of streptozotocin at 0.045 mg/g body weight daily for 2 days. The antidiabetic effects of the secondary metabolite at doses of 0.5 mg/kg body weight (twice a day) when administered orally for up to 5 days were tested in diabetic rats. The random sugar levels (mg/dL) were measured using a One Touch Ultra Plus medical device for observation of randomized blood sugar levels. Results and novelty: The results revealed that the secondary metabolite, as an analyte from the BD leaf extract, can significantly reduce random blood sugar levels. Conclusion: The secondary metabolite extracted from BD, could be used to treat diabetes in rats.
Collapse
Affiliation(s)
- Mochamad Lazuardi
- Subdivision the Veterinary-Pharmacy Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Aniek Setya Budiatin
- Material Division, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Tjuk Imam Restiadi
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Nsairat H, Al-Samydai A, El-Tanani M, Shakya AK, Ahmad S, Alsotari S, Alshaer W, Shanneir A, Saket MM, Arafat TA. In vitro dissolution equivalence of Jordanian sildenafil generics via validated, stability-indicating HPLC method. Bioanalysis 2024; 16:369-384. [PMID: 38497721 PMCID: PMC11235137 DOI: 10.4155/bio-2023-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
This study was conducted to compare dissolution profiles of four Jordanian registered sildenafil (SDF) products to the originator. Dissolution samples were analyzed utilizing a validated and stability-indicating HPLC method in human plasma. Validation was performed for specificity, linearity, limit of detection, lower limit of quantification, precision, trueness and stability. SDF was extracted from plasma samples using liquid-liquid extraction. The analysis was performed utilizing isocratic elution on C18 column with 1.0 ml/min flow rate. The regression value was ∼0.999 over 3 days with drug recovery between 86.6 to 89.8%with 10 ng/ml lower limit of quantitation. This method displayed a good selectivity of SDF with improved stability under various conditions. The method was used for SDF quantification in dissolution medium. Similarity factors for local products varied according to the used mediums, but all SDF local products passed the dissolution in vitro test since all of them showed a released of >85% after 60 min at the dissolution mediums.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates
| | - Ashok K Shakya
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Somaya Ahmad
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | | | - Walhan Alshaer
- Cell Therapy Center, University of Jordan, Amman, 11942, Jordan
| | | | - Munib M Saket
- Department of Pharmaceutical and Chemical Engineering, School of Applied Medical Sciences, German Jordanian University, PO Box 35247 Amman, 11180, Jordan
| | - Tawfiq A Arafat
- Jordan Center for Pharmaceutical Research, PO Box 950435, Amman, 11195, Jordan
| |
Collapse
|
3
|
Rusu T, Delion M, Pirot C, Blin A, Rodenas A, Talbot JN, Veran N, Portal C, Montravers F, Cadranel J, Prignon A. Fully automated radiolabeling of [ 68Ga]Ga-EMP100 targeting c-MET for PET-CT clinical imaging. EJNMMI Radiopharm Chem 2023; 8:30. [PMID: 37843660 PMCID: PMC10579204 DOI: 10.1186/s41181-023-00213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND c-MET is a transmembrane receptor involved in many biological processes and contributes to cell proliferation and migration during cancer invasion process. Its expression is measured by immunehistochemistry on tissue biopsy in clinic, although this technique has its limitations. PET-CT could allow in vivo mapping of lesions expressing c-MET, providing whole-body detection. A number of radiopharmaceuticals are under development for this purpose but are not yet in routine clinical use. EMP100 is a cyclic oligopeptide bound to a DOTA chelator, with nanomolar affinity for c-MET. The aim of this project was to develop an automated method for radiolabelling the radiopharmaceutical [68Ga]Ga-EMP100. RESULTS The main results showed an optimal pH range between 3.25 and 3.75 for the complexation reaction and a stabilisation of the temperature at 90 °C, resulting in an almost complete incorporation of gallium-68 after 10 min of heating. In these experiments, 90 µg of EMP-100 peptide were initially used and then lower amounts (30, 50, 75 µg) were explored to determine the minimum required for sufficient synthesis yield. Radiolysis impurities were identified by radio-HPLC and ascorbic acid and ethanol were used to improve the purity of the compound. Three batches of [68Ga]Ga-EMP100 were then prepared according to the optimised parameters and all met the established specifications. Finally, the stability of [68Ga]Ga-EMP100 was assessed at room temperature over 3 h with satisfactory results in terms of appearance, pH, radiochemical purity and sterility. CONCLUSIONS For the automated synthesis of [68Ga]Ga-EMP100, the parameters of pH, temperature, precursor peptide content and the use of adjuvants for impurity management were efficiently optimised, resulting in the production of three compliant and stable batches according to the principles of good manufacturing practice. [68Ga]Ga-EMP100 was successfully synthesised and is now available for clinical development in PET-CT imaging.
Collapse
Affiliation(s)
- Timofei Rusu
- THERANOSCAN Clinical Research Group Sorbonne University, Tenon Hospital AP-HP, Paris, France.
- Positron Molecular Imaging Laboratory (LIMP) UMS28 Small Animal Phenotyping, Sorbonne University, Paris, France.
- Nuclear Medicine Imaging Department and Radiopharmacy, Tenon Hospital AP-HP, Paris, France.
- Radiopharmacist - Hôpital Tenon Assistance Publique - Hôpitaux de Paris, Paris, France.
| | - Matthieu Delion
- Nuclear Medicine Imaging Department and Radiopharmacy, Tenon Hospital AP-HP, Paris, France
| | - Charlotte Pirot
- Nuclear Medicine Imaging Department and Radiopharmacy, Tenon Hospital AP-HP, Paris, France
| | - Amaury Blin
- Nuclear Medicine Imaging Department and Radiopharmacy, Tenon Hospital AP-HP, Paris, France
| | - Anita Rodenas
- THERANOSCAN Clinical Research Group Sorbonne University, Tenon Hospital AP-HP, Paris, France
| | - Jean-Noël Talbot
- Institut National des Sciences et Techniques Nucléaires (INSTN), Saclay, France
| | - Nicolas Veran
- CHRU de Nancy Pôle Pharmacie : Centre Hospitalier Régional Universitaire de Nancy Pôle Pharmacie, Nancy, France
| | | | - Françoise Montravers
- Nuclear Medicine Imaging Department and Radiopharmacy, Tenon Hospital AP-HP, Paris, France
| | - Jacques Cadranel
- THERANOSCAN Clinical Research Group Sorbonne University, Tenon Hospital AP-HP, Paris, France
- Service de Pneumologie et Oncologie Thoracique, APHP - Hôpital Tenon and Sorbonne Université, Paris, France
| | - Aurélie Prignon
- THERANOSCAN Clinical Research Group Sorbonne University, Tenon Hospital AP-HP, Paris, France
- Positron Molecular Imaging Laboratory (LIMP) UMS28 Small Animal Phenotyping, Sorbonne University, Paris, France
| |
Collapse
|
4
|
Migliari S, Scarlattei M, Baldari G, Ruffini L. Scale down and optimized automated production of [68Ga]68Ga-DOTA-ECL1i PET tracer targeting CCR2 expression. EJNMMI Radiopharm Chem 2023; 8:3. [PMID: 36729317 PMCID: PMC9895323 DOI: 10.1186/s41181-023-00188-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Recently it has been identified a short peptide that showed allosteric antagonism against C-C motif chemokine receptor 2 (CCR2) expressed on inflammatory monocyte and macrophages. A 7-D-amino acid peptidic CCR2 inhibitor called extracellular loop 1 inverso (ECL1i), d(LGTFLKC) has been identified and labeled to obtain a new probe for positron emission tomography in pulmonary fibrosis, heart injury, abdominal aortic aneurysm inflammation, atherosclerosis, head and neck cancer. Our goal was to develop, optimize and validate an automated synthesis method for [68Ga]68Ga-DOTA-ECL1i to make it available for a broader community. The synthesis of [68Ga]68Ga-DOTA-ECL1i was done using the Scintomics GRP® module with the already estabilished synthesis template for [68Ga]68Ga-DOTATOC/[68Ga]68Ga-PSMA. The radiopharmaceutical production was optimized scaling down the amount of DOTA-ECL1i (from 50 to 10 μg), evaluating synthesis efficiency and relevant quality control parameters in accordance with the European Pharmacopeia. RESULTS Best results were yielded with 20 μg DOTA-ECL1i and then the process validation was carried out by producing three different batches on three different days obtaining an optimal radiochemical yield (66.69%) as well as radiochemical purity (100%) and molar activity (45.41 GBq/µmol). CONCLUSIONS [68Ga]68Ga-DOTA-ECL1i was successfully synthesized and it is, thus, available for multi-dose application in clinical settings.
Collapse
Affiliation(s)
- Silvia Migliari
- grid.411482.aNuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Maura Scarlattei
- grid.411482.aNuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giorgio Baldari
- grid.411482.aNuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Livia Ruffini
- grid.411482.aNuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
5
|
Automated GMP Production and Preclinical Evaluation of [ 68Ga]Ga-TEoS-DAZA and [ 68Ga]Ga-TMoS-DAZA. Pharmaceutics 2022; 14:pharmaceutics14122695. [PMID: 36559188 PMCID: PMC9783202 DOI: 10.3390/pharmaceutics14122695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
[68Ga]Ga-TEoS-DAZA and [68Ga]Ga-TMoS-DAZA are two novel radiotracers suitable for functional PET liver imaging. Due to their specific liver uptake and biliary excretion, the tracers may be applied for segmental liver function quantification, gall tree imaging and the differential diagnosis of liver nodules. The purpose of this study was to investigate problems that occurred initially during the development of the GMP compliant synthesis procedure and to evaluate the tracers in a preclinical model. After low radiolabeling yields were attributed to precursor instability at high temperatures, an optimized radiolabeling procedure was established. Quality controls were in accordance with Ph. Eur. requirements and gave compliant results, although the method for the determination of the 68Ga colloid is partially inhibited due to the presence of a radioactive by-product. The determination of logP revealed [68Ga]Ga-TEoS-DAZA (ethoxy bearing) to be more lipophilic than [68Ga]Ga-TMoS-DAZA (methoxy bearing). Accordingly, biodistribution studies in an in ovo model showed a higher liver uptake for [68Ga]Ga-TEoS-DAZA. In dynamic in ovo PET imaging, rapid tracer accumulation in the liver was observed. Similarly, the activity in the intestines rose steadily within the first hour p.i., indicating biliary excretion. As [68Ga]Ga-TEoS-DAZA and [68Ga]Ga-TMoS-DAZA can be prepared according to GMP guidelines, transition into the early clinical phase is now possible.
Collapse
|
6
|
Migliari S, Scarlattei M, Baldari G, Silva C, Ruffini L. A Specific HPLC Method to Determine Residual HEPES in [ 68Ga]Ga-Radiopharmaceuticals: Development and Validation. Molecules 2022; 27:molecules27144477. [PMID: 35889351 PMCID: PMC9323806 DOI: 10.3390/molecules27144477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Nowadays, in Nuclear Medicine, clinically applied radiopharmaceuticals must meet quality release criteria such as high radiochemical purity and radiochemical yield. Many radiopharmaceuticals do not have marketing authorization and have no dedicated monograph within European Pharmacopeia (Ph. Eur.); therefore, general monographs on quality controls (QCs) have to be applied for clinical application. These criteria require standardization and validation in labeling and preparation, including quality controls measurements, according to well defined standard operation procedures. However, QC measurements are often based on detection techniques that are specific to a certain chromatographic system. Several radiosyntheses of [68Ga]Ga-radiopharmaceuticals are more efficient and robust when they are performed with 2-[4-(2-hydroxyethyl)piperazin-1-yl] ethanesulfonic acid (HEPES) buffer, which is considered as an impurity to be assessed in the QC procedure, prior to clinical use. Thus, Ph. Eur. has introduced a thin-layer chromatography (TLC) method to quantify the HEPES amount that is present in [68Ga]Ga-radiopharmaceuticals. However, this is only qualitative and has proven to be unreliable. Here we develop and validate a new high-performance liquid chromatography (UV-Radio-HPLC) method to quantify the residual amount of HEPES in 68Ga-based radiopharmaceuticals. Method: To validate the proposed UV-Radio-HPLC method, a stepwise approach was used, as defined in the guidance document that was adopted by the European Medicines Agency (CMP/ICH/381/95 2014). The assessed parameters are specificity, linearity, precision (repeatability), accuracy, and limit of quantification. A range of concentrations of HEPES (100, 80, 60, 40, 20, 10, 5, 3 μg/mL) were analyzed. Moreover, to test the validity and pertinence of our new HPLC method, we analyzed samples of [68Ga]Ga-DOTATOC; [68Ga]Ga-PSMA; [68Ga]Ga-DOTATATE; [68Ga]Ga-Pentixafor; and [68Ga]Ga-NODAGA-Exendin-4 from different batches that were prepared for clinical use. Results: In the assessed samples, HEPES could not be detected by the TLC method that was described in Ph. Eur. within 4 min incubation in an iodine-saturated chamber. Our developed HPLC method showed excellent linearity between 3 and 100 μg/mL for HEPES, with a correlation coefficient (R2) for calibration curves that was equal to 0.999, coefficients of variation (CV%) < 2%, and percent deviation value of bias from 100% to 5%, in accordance with acceptance criteria. The intra-day and inter-day precision of our method was statistically confirmed and the limit-of-quantification (LOQ) was 3 μg/mL, confirming the high sensitivity of the method. The amount of HEPES that was detected with our developed HPLC method in the tested [68Ga]Ga-radiopharmaceuticals resulted well below the Ph. Eur. limit, especially for [68Ga]Ga-NODAGA-Exendin-4. Conclusions: The TLC method that is described in Ph. Eur. to assess residual HEPES in [68Ga]-based radiopharmaceuticals may not be sufficiently sensitive and thus unsuitable for QC release. Our new HPLC method was sensitive, quantitative, reproducible, and rapid for QCs, allowing us to exactly determine the residual HEPES amount in [68Ga]Ga-radiopharmaceuticals for safe patient administration.
Collapse
Affiliation(s)
- Silvia Migliari
- Nuclear Medicine and Molecular Imaging Department, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126 Parma, Italy; (M.S.); (G.B.); (L.R.)
- Correspondence: ; Tel.: +39-3335939138
| | - Maura Scarlattei
- Nuclear Medicine and Molecular Imaging Department, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126 Parma, Italy; (M.S.); (G.B.); (L.R.)
| | - Giorgio Baldari
- Nuclear Medicine and Molecular Imaging Department, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126 Parma, Italy; (M.S.); (G.B.); (L.R.)
| | - Claudia Silva
- Food and Drug Sciences Department, Parco Area delle Scienze 27/A, University of Parma, 43124 Parma, Italy;
| | - Livia Ruffini
- Nuclear Medicine and Molecular Imaging Department, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126 Parma, Italy; (M.S.); (G.B.); (L.R.)
| |
Collapse
|