1
|
Mehany T, González-Sáiz JM, Pizarro C. Recent advances in spectroscopic approaches for assessing the stability of bioactive compounds and quality indices of olive oil during deep-frying: Current knowledge, challenges, and implications. Food Chem 2025; 464:141624. [PMID: 39423542 DOI: 10.1016/j.foodchem.2024.141624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Foods fried in olive oil received great attention due to its bioactive profile, antioxidants, high stability, and health benefits. However, several chemical alterations contribute to olive oil degradation during deep-frying (DF), and negatively modify its safety and quality. Therefore, measuring the quality indices of olive oil is a vital topic. The classical chemical approaches are destructive and use toxic chemicals, thus, a harmless and real-time analytical technique has become increasingly critical. This review highlights the recent advances of spectroscopic technologies (STs) stand-alone or integrated with chemometrics to provide reliable, rapid, low-cost, sustainable, multi-parametric, and eco-friendly method for monitoring the quality and safety of olive oil during thermal processing, moreover, the limitations of STs are included. The present review offers fundamental insights regarding the degradation of deep-fried olive oil and provides recent evidence in spectroscopy that can be used as consistent method, providing more benefits for the consumers and food industry.
Collapse
Affiliation(s)
- Taha Mehany
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain.
| | | | - Consuelo Pizarro
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain.
| |
Collapse
|
2
|
Mengesha D, Retta N, Deribew HA, Urugo MM, Getachew P. Estimation of dietary acrylamide exposure of Ethiopian population through coffee consumption. J Food Prot 2024:100441. [PMID: 39725326 DOI: 10.1016/j.jfp.2024.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
This study estimated the acrylamide exposure of the Ethiopian population through traditional brewing of Coffee arabica. Acrylamide concentrations in traditionally processed Ethiopian C. arabica varieties from Jimma, Sidama, Yirgacheffe, Nekemte, and Hararge were measured. A qualitative survey in Addis Ababa was used to develop a traditional coffee brewing flowchart, which was then applied in a laboratory setting. Acrylamide concentrations in roasted coffee powders were found to be 944.01, 861.67, 739.63, 726.35, and 326.60 μg/kg for Hararge, Nekemte, Jimma, Yirgacheffe, and Sidama, respectively. First brew concentrations were 119.97, 112.10, 108.68, 94.07, and 6.67 μg/L, and second brew concentrations were 21.41, 16.45, 16.77, 3.92, and 6.31 μg/L for the respective varieties of Nekemte, Yirgachefe, Jimma, Hararge, and Sidama. Estimated daily intakes (EDI) of acrylamide, based on coffee consumption data, were well below harmful levels (< 200 μg/kg bw/day), with Target Hazard Quotient (THQ) values indicating minimal non-carcinogenic risk (< 1). The study also found low concern for non-neoplastic effects (intake < 0.2 μg/kg bw/day) from Sidama and Nekemte coffees, although a relatively higher concern was observed for Nekemte in specific areas. The findings suggest that reducing acrylamide content in coffee through preventive actions and mitigation strategies is advisable to minimize potential health risks.
Collapse
Affiliation(s)
- Dhaba Mengesha
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia; Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Negussie Retta
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Henok Ashagrie Deribew
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Markos Makiso Urugo
- Department of Food Science and Postharvest Technology, College of Agricultural Sciences, Wachemo University-667, Ethiopia; Department of Post-Harvest Management, College of Agriculture and Veterinary Medicine, Jimma University-307, Ethiopia
| | - Paulos Getachew
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
3
|
Qiao K, Zhao M, Huang Y, Liang L, Zhang Y. Bitter Perception and Effects of Foods Rich in Bitter Compounds on Human Health: A Comprehensive Review. Foods 2024; 13:3747. [PMID: 39682819 DOI: 10.3390/foods13233747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Bitter food, because of its unique taste, is not popular with the public, and is even considered to be difficult to swallow. By binding to specific sites of bitter receptors (26 hTAS2Rs), bitter compounds activate the downstream signaling pathways mediated by G protein, which convert chemical signals into electrical signals that are ultimately transmitted to the brain to produce the bitter perception. The intensity of bitterness is mainly determined by the hydrophobic recognition region of bitter receptors. The bitter compounds in foods mainly include alkaloids, polyphenols, terpenoids, amino acids, etc. Foods rich in bitter taste are mostly natural such as beans, nuts, and coffee, etc. Studies have proven that bitter foods have biological activities such as preventing hyperlipidemia, hypertension, hyperglycemia, anti-inflammatory, antitumor, antibacterial, antioxidant, and exhibit neuroprotective effects and other biological activities. The purpose of this review is to explore the bitter perception and the biological activity of bitter compounds, clarify the mechanism of their action on human health, and provide theoretical guidance for the development and application of functional foods.
Collapse
Affiliation(s)
- Kaina Qiao
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Mingxia Zhao
- Food Laboratory of Zhongyuan · Luohe Food Engineering Vocational University, Luohe 462300, China
| | - Yan Huang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Romero‐Marco P, Chicharro C, Verde Z, Miguel‐Tobal F, Fernández‐Araque A. Effect on blood lipids and body composition of a high-fat (MUFA) and high-fiber diet: A case-control study. Food Sci Nutr 2024; 12:3863-3871. [PMID: 38873480 PMCID: PMC11167160 DOI: 10.1002/fsn3.4042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 06/15/2024] Open
Abstract
Metabolic Syndrome (MetS) is a constellation of risk factors including abdominal obesity, high triglycerides, low HDL cholesterol (HDL-C), elevated blood pressure, and elevated fasting glucose. In Spain, according to WHO criteria, the MetS prevalence is shown to be 32% in men and 29% in women. The role of dietary habits is one of the main therapeutic strategies for the management of MetS but the most effective dietary pattern has not been established yet. This study aimed to analyze the effect of on body composition, serum lipids, and MetS components of a high-MUFA and high-fiber diet (HMFD). A case-control study was performed considering 40 cohabiting women. Participants were randomly assigned to HMFD group or high mono-unsaturated diet (HMD) group to receive one of the two proposed dietary interventions. All data (serum lipids, blood pressure, height, weight, body composition, and waist circumference) were collected fasting at baseline, 55, 98, and 132 days. The HMFD group showed higher decrease in waist circumference than in the HMD group. LDL-C dropped in both groups. Triglycerides in the HMFD group dropped during the intervention, but once the intervention was over, they returned to baseline values. The mean systolic blood pressure was lower in HMFD group. A HMFD from a weekly consumption of processed meat (Torrezno de Soria) deeply fried in extra virgin olive oil in combination with vegetables logged in a Mediterranean diet can improve MetS risk factors in healthy overweight women.
Collapse
Affiliation(s)
- Patricia Romero‐Marco
- Department of Nursing, Faculty of Health SciencesUniversity of ValladolidSoriaSpain
- Pharmacogenetics, Cancer Genetics, Genetic Polymorphisms and Pharmacoepidemiology, Center for Drug Safety Studies, Department of Nursing, Health Sciences, Molecular Genetics of Disease – IBGMUniversity of ValladolidSoriaSpain
| | - Celia Chicharro
- Department of Legal Medicine, Psychiatry and Pathology, Biopathology‐Toxicology Laboratory, Faculty of MedicineUniversity Complutense of MadridMadridSpain
- Centro de Estudios Gregorio MarañónFundación Ortega‐MarañónMadridSpain
| | - Zoraida Verde
- Pharmacogenetics, Cancer Genetics, Genetic Polymorphisms and Pharmacoepidemiology, Center for Drug Safety Studies, Department of Nursing, Health Sciences, Molecular Genetics of Disease – IBGMUniversity of ValladolidSoriaSpain
- Centro de Estudios Gregorio MarañónFundación Ortega‐MarañónMadridSpain
- Department of Biochemistry and Molecular Biology, Faculty of Health SciencesUniversity of ValladolidSoriaSpain
| | - Francisco Miguel‐Tobal
- Department of Radiology, Rehabilitation and Physiotherapy; School of Medicine of Physical Education and Sport; Faculty of MedicineUniversity Complutense of MadridMadridSpain
| | - Ana Fernández‐Araque
- Department of Nursing, Faculty of Health SciencesUniversity of ValladolidSoriaSpain
- Pharmacogenetics, Cancer Genetics, Genetic Polymorphisms and Pharmacoepidemiology, Center for Drug Safety Studies, Department of Nursing, Health Sciences, Molecular Genetics of Disease – IBGMUniversity of ValladolidSoriaSpain
| |
Collapse
|
5
|
Zupo R, Castellana F, Crupi P, Desantis A, Rondanelli M, Corbo F, Clodoveo ML. Olive Oil Polyphenols Improve HDL Cholesterol and Promote Maintenance of Lipid Metabolism: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Metabolites 2023; 13:1187. [PMID: 38132869 PMCID: PMC10745457 DOI: 10.3390/metabo13121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
In 2011, the European Food Safety Authority (EFSA) accorded a health claim to olive oil polyphenols in that they protected LDL particles from oxidative damage. However, limited scientific evidence has so far failed to confer any claim of function on the maintenance of normal lipid metabolism. We performed a systematic review and meta-analysis of human RCTs, evaluating the effect of olive oil polyphenol administration on lipid profiles. Previous literature was acquired from six electronic databases until June 2023. A total of 75 articles were retrieved and screened for inclusion criteria, which resulted in the selection of 10 RCTs that evaluated the effect of daily exposure to olive oil polyphenols on serum lipids in adults. Meta-analyses were built by tertiles of outcomes, as follows: low (0-68 mg/kg), medium (68-320 mg/kg), and high (320-600 mg/kg) polyphenols for HDL and LDL cholesterol (HDL-C and LDL-C, respectively), and low (0-59.3 mg/kg), medium (59.3-268 mg/kg), and high (268-600 mg/kg) polyphenols for total cholesterol (TC). The study protocol was registered on PROSPERO (registration code: CRD42023403383). The study design was predominantly cross-over (n = 8 of 10) but also included parallel (n = 2 of 10). The study population was predominantly European and healthy. Daily consumption of olive oil polyphenols did not affect TC levels and only slightly significantly reduced LDL-C, with WMD statistically significant only for high daily consumption of olive oil polyphenols (WMD -4.28, 95%CI -5.78 to -2.77). Instead, our data found a statistically significant HDL-C enhancing effect (WMD pooled effect model: 1.13, 95%CI 0.45; 1.80, heterogeneity 38%, p = 0.04) with WMD by daily exposure level showing a statistically significant improvement effect for low (WMD 0.66, 95%CI 0.10-1.23), medium (WMD 1.36, 95%CI 0.76-1.95), and high (WMD 1.13, 95%CI 0.45-1.80) olive oil polyphenol consumptions. Olive oil polyphenols contribute toward maintaining lipid metabolism. Thus, food labeling regulations should stress this health feature of olive oil, whereby a declaration of the olive oil polyphenol content should be added to products on the market. Consumers need to be aware of the quality and possible health effects of any products they consume, and enforcement of nutrition labels offers the best way of providing this information.
Collapse
Affiliation(s)
- Roberta Zupo
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy; (F.C.); (P.C.); (M.L.C.)
| | - Fabio Castellana
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy; (F.C.); (P.C.); (M.L.C.)
| | - Pasquale Crupi
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy; (F.C.); (P.C.); (M.L.C.)
| | - Addolorata Desantis
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.D.); (F.C.)
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.D.); (F.C.)
| | - Maria Lisa Clodoveo
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy; (F.C.); (P.C.); (M.L.C.)
| |
Collapse
|
6
|
Sánchez R, Beltrán Sanahuja A, Prats Moya MS, Todolí JL. Application of Dispersive Liquid-Liquid Aerosol Phase Extraction to the Analysis of Total and Individual Phenolic Compounds in Fried Extra Virgin Olive Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37399284 PMCID: PMC10360154 DOI: 10.1021/acs.jafc.3c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Seventeen extra virgin olive oil samples from Valencian Community (Spain) were submitted to a domestic-frying process (180 °C) during different degradation times (5, 10, 30, 60, 120 min). A dispersive liquid-liquid aerosol phase extraction by using a methanol/water (50:50) extracting solution was used to isolate the polyphenol fraction. Total phenolic content (TPC) was determined, whereas the determination of seven individual target polyphenolic compounds (hydroxytyrosol, tyrosol, oleuropein, vanillic acid, p-coumaric acid, ferulic acid, and vanillin) was carried out by using ultrahigh-performance liquid chromatography coupled to a tandem mass spectrometer. Statistically significant differences in the TPC values were found for Blanqueta and Manzanilla samples from different harvesting years. The domestic-frying process impacted the TPC and the individual phenolic compounds content. Thermal treatment for 2 h gave rise to a 94% decrease in the TPC. A first-order kinetic model was suitable to accurately describe the degradation of the individual phenolic compounds.
Collapse
Affiliation(s)
- Raquel Sánchez
- Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080 Alicante, Spain
| | - Ana Beltrán Sanahuja
- Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080 Alicante, Spain
| | - María Soledad Prats Moya
- Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080 Alicante, Spain
| | - José-Luis Todolí
- Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080 Alicante, Spain
| |
Collapse
|
7
|
Kmiecik D, Fedko M, Małecka J, Siger A, Kowalczewski PŁ. Effect of Heating Temperature of High-Quality Arbequina, Picual, Manzanilla and Cornicabra Olive Oils on Changes in Nutritional Indices of Lipid, Tocopherol Content and Triacylglycerol Polymerization Process. Molecules 2023; 28:molecules28104247. [PMID: 37241988 DOI: 10.3390/molecules28104247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of the study was to determine the stability and heat resistance of extra premium olive oil. The study material consisted of six extra virgin olive oils (EVOO) obtained from Spain. Four samples were single-strain olive oils: Arbequina, Picual, Manzanilla, and Cornicabra. Two samples were a coupage of Arbequina and Picual varieties: Armonia (70% Arbequina and 30% Picual) and Sensation (70% Picual and 30% Arbequina). Olive oil samples were heated at 170 °C and 200 °C in a pan (thin layer model). In all samples, changes in indexes of lipid nutritional quality (PUFA/SFA, index of atherogenicity, index of thrombogenicity, and hypocholesterolemic/hypercholesterolemic ratio), changes in tocopherol, total polar compounds content, and triacylglycerol polymers were determined. Heating olive oil in a thin layer led to its degradation and depended on the temperature and the type of olive oil. Increasing the temperature from 170 to 200 °C resulted in significantly higher degradation of olive oil. At 200 °C, deterioration of lipid nutritional indices, total tocopherol degradation, and formation of triacylglycerol polymers were observed. A twofold increase in the polar fraction was also observed compared to samples heated at 170 °C. The most stable olive oils were Cornicabra and Picual.
Collapse
Affiliation(s)
- Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| | - Monika Fedko
- Division of Fat and Oils and Food Concentrates Technology, Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-787 Warsaw, Poland
| | - Justyna Małecka
- Liberado Justyna Małecka Oliwny Raj, 233 Dąbrowskiego St., 60-406 Poznań, Poland
| | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-634 Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| |
Collapse
|
8
|
Farhan N, Al-Maleki AR, Sarih NM, Yahya R, Shebl M. Therapeutic importance of chemical compounds in extra virgin olive oil and their relationship to biological indicators: A narrative review and literature update. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Cattivelli A, Di Lorenzo A, Conte A, Martini S, Tagliazucchi D. Red-skinned onion phenolic compounds stability and bioaccessibility: A comparative study between deep-frying and air-frying. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Tarapoulouzi M, Agriopoulou S, Koidis A, Proestos C, Enshasy HAE, Varzakas T. Recent Advances in Analytical Methods for the Detection of Olive Oil Oxidation Status during Storage along with Chemometrics, Authenticity and Fraud Studies. Biomolecules 2022; 12:1180. [PMID: 36139019 PMCID: PMC9496477 DOI: 10.3390/biom12091180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Olive oil is considered to be a food of utmost importance, especially in the Mediterranean countries. The quality of olive oil must remain stable regarding authenticity and storage. This review paper emphasizes the detection of olive oil oxidation status or rancidity, the analytical techniques that are usually used, as well as the application and significance of chemometrics in the research of olive oil. The first part presents the effect of the oxidation of olive oil during storage. Then, lipid stability measurements are described in parallel with instrumentation and different analytical techniques that are used for this particular purpose. The next part presents some research publications that combine chemometrics and the study of lipid changes due to storage published in 2005-2021. Parameters such as exposure to light, air and various temperatures as well as different packaging materials were investigated to test olive oil stability during storage. The benefits of each chemometric method are provided as well as the overall significance of combining analytical techniques and chemometrics. Furthermore, the last part reflects on fraud in olive oil, and the most popular analytical techniques in the authenticity field are stated to highlight the importance of the authenticity of olive oil.
Collapse
Affiliation(s)
- Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Anastasios Koidis
- Institute for Global Food Security, School of Biological Science, Queen’s University Belfast, Belfast BT9 5DL, Northern Ireland, UK
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Borg Al Arab 21934, Egypt
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
| |
Collapse
|
11
|
Jiménez-Sánchez A, Martínez-Ortega AJ, Remón-Ruiz PJ, Piñar-Gutiérrez A, Pereira-Cunill JL, García-Luna PP. Therapeutic Properties and Use of Extra Virgin Olive Oil in Clinical Nutrition: A Narrative Review and Literature Update. Nutrients 2022; 14:nu14071440. [PMID: 35406067 PMCID: PMC9003415 DOI: 10.3390/nu14071440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil (EVOO) is a cornerstone of the Mediterranean diet (MedD). In this narrative review, we synthesize and illustrate the various characteristics and clinical applications of EVOO and its components—such as oleic acid, hydroxytyrosol, and oleuropein—in the field of clinical nutrition and dietetics. The evidence is split into diet therapy, oleic acid-based enteral nutrition formulations and oral supplementation formulations, oleic acid-based parenteral nutrition, and nutraceutical supplementation of minor components of EVOO. EVOO has diverse beneficial health properties, and current evidence supports the use of whole EVOO in diet therapy and the supplementation of its minor components to improve cardiovascular health, lipoprotein metabolism, and diabetes mellitus in clinical nutrition. Nevertheless, more intervention studies in humans are needed to chisel specific recommendations for its therapeutic use through different formulations in other specific diseases and clinical populations.
Collapse
Affiliation(s)
- Andrés Jiménez-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| | - Antonio Jesús Martínez-Ortega
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Torrecárdenas, C. Hermandad de Donantes de Sangre, s/n, 04009 Almería, Spain
| | - Pablo Jesús Remón-Ruiz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Ana Piñar-Gutiérrez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - José Luis Pereira-Cunill
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Pedro Pablo García-Luna
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| |
Collapse
|
12
|
Nardini M. Phenolic Compounds in Food: Characterization and Health Benefits. Molecules 2022; 27:783. [PMID: 35164044 PMCID: PMC8839921 DOI: 10.3390/molecules27030783] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress is involved in the onset and development of several human diseases, such as cardiovascular diseases, diabetes, ageing, cancer, and neurodegenerative diseases [...].
Collapse
Affiliation(s)
- Mirella Nardini
- CREA, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|