1
|
Amirjan M, Nemati F, Elahimehr Z, Rangraz Y. Copper oxides supported sulfur-doped porous carbon material as a remarkable catalyst for reduction of aromatic nitro compounds. Sci Rep 2024; 14:5491. [PMID: 38448558 PMCID: PMC10918164 DOI: 10.1038/s41598-024-55216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Synthesis and manufacturing of metal-organic framework derived carbon/metal oxide nanomaterials with an advisable porous structure and composition are essential as catalysts in various organic transformation processes for the preparation of environmentally friendly catalysts. In this work, we report a scalable synthesis of sulfur-doped porous carbon-containing copper oxide nanoparticles (marked CuxO@CS-400) via direct pyrolysis of a mixture of metal-organic framework precursor called HKUST-1 and diphenyl disulfide for aromatic nitro compounds reduction. X-ray diffraction, surface area analysis (BET), X-ray energy diffraction (EDX) spectroscopy, thermal gravimetric analysis, elemental mapping, infrared spectroscopy (FT-IR), transmission electron microscope, and scanning electron microscope (FE-SEM) analysis were accomplished to acknowledge and investigate the effect of S and CuxO as active sites in heterogeneous catalyst to perform the reduction-nitro aromatic compounds reaction in the presence of CuxO@CS-400 as an effective heterogeneous catalyst. The studies showed that doping sulfur in the resulting carbon/metal oxide substrate increased the catalytic activity compared to the material without sulfur doping.
Collapse
Affiliation(s)
- Marzie Amirjan
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran
| | - Firouzeh Nemati
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran.
| | - Zeinab Elahimehr
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran
| | - Yalda Rangraz
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran
| |
Collapse
|
2
|
Yang X, Xu Y, Naraginti S, Wei X. Enhanced sulfamethazine detoxification by a novel BiOCl (110)/NrGO/BiVO 4 heterojunction. ENVIRONMENTAL RESEARCH 2023; 232:116351. [PMID: 37327844 DOI: 10.1016/j.envres.2023.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
The emerging contaminants removal from the environment has recently been raised concerns due to their presence in higher concentrations. Over usage of emerging contaminant such as sulfamethazine poses serious threat to the aquatic and human health as well. This study deals with rationally structured a novel BiOCl (110)/NrGO/BiVO4 heterojunction which is used to detoxify sulfamethazine (SMZ) antibiotic efficiently. The synthesised composite was well characterized and the morphological analysis evidenced the formation of heterojunction consisted of nanoplates BiOCl with dominant exposed (110) facets and leaf like BiVO4 on NrGO layers. Further results revealed that the addition of BiVO4 and NrGO tremendously increased the photocatalytic degradation efficiency of BiOCl with the rate of 96.9% (k = 0.01783 min-1) towards SMZ within 60 min of visible light irradiation. Furthermore, heterojunction energy-band theory was employed to determine the degradation mechanism of SMX in this study. The larger surface area of BiOCl and NrGO layers are believed to be the reason for higher activity which facilitates the excellent charge transfer and improved light absorption. In addition, SMZ degradation products identification was carried out by LC-ESI/MS/MS to determine the pathway of degradation. The toxicity assessment was studied using E. coli as a model microorganism through colony forming unit assay (CFU), and the results indicated a significant reduction in biotoxicity was observed in 60 min of degradation process. Thus, our work gives new methods in developing various materials that effectively treat emerging contaminants from the aqueous environment.
Collapse
Affiliation(s)
- Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China.
| | - Yutao Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Saraschandra Naraginti
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China.
| | - Xueyu Wei
- School of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, PR China
| |
Collapse
|
3
|
Ma Q, Long G, Tang X, Li X, Wang X, You C, Fan W, Wang Q. Zinc-Mediated Template Synthesis of Hierarchical Porous N-Doped Carbon Electrocatalysts for Efficient Oxygen Reduction. Molecules 2023; 28:4257. [PMID: 37298734 PMCID: PMC10254328 DOI: 10.3390/molecules28114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The development of highly active and low-cost catalysts for use in oxygen reduction reaction (ORR) is crucial to many advanced and eco-friendly energy techniques. N-doped carbons are promising ORR catalysts. However, their performance is still limited. In this work, a zinc-mediated template synthesis strategy for the development of a highly active ORR catalyst with hierarchical porous structures was presented. The optimal catalyst exhibited high ORR performance in a 0.1 M KOH solution, with a half-wave potential of 0.89 V vs. RHE. Additionally, the catalyst exhibited excellent methanol tolerance and stability. After a 20,000 s continuous operation, no obvious performance decay was observed. When used as the air-electrode catalyst in a zinc-air battery (ZAB), it delivered an outstanding discharging performance, with peak power density and specific capacity as high as 196.3 mW cm-2 and 811.5 mAh gZn-1, respectively. Its high performance and stability endow it with potential in practical and commercial applications as a highly active ORR catalyst. Additionally, it is believed that the presented strategy can be applied to the rational design and fabrication of highly active and stable ORR catalysts for use in eco-friendly and future-oriented energy techniques.
Collapse
Affiliation(s)
- Qianhui Ma
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.M.); (X.T.); (X.L.)
| | - Guifa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, China;
| | - Xulei Tang
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.M.); (X.T.); (X.L.)
| | - Xiaobao Li
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.M.); (X.T.); (X.L.)
| | - Xianghui Wang
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.M.); (X.T.); (X.L.)
| | - Chenghang You
- Hainan Provincial Key Laboratory of Fine Chemistry, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China;
| | - Wenjun Fan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Qingqing Wang
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.M.); (X.T.); (X.L.)
- Hainan Provincial Key Laboratory of Fine Chemistry, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China;
| |
Collapse
|
4
|
Biowaste-Derived Heteroatom-Doped Porous Carbon as a Sustainable Electrocatalyst for Hydrogen Evolution Reaction. Catalysts 2023. [DOI: 10.3390/catal13030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Heteroatom-doped porous carbon material (H-PCM) was synthesized using Anacardium occidentale (cashew) nut’s skin by a simple pyrolysis route. The resulting H-PCM was thoroughly characterized by various analytical techniques such as field emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray (EDX) spectroscopy, high-resolution transmittance electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, nitrogen adsorption–desorption isotherms, X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The obtained results strongly demonstrated that the synthesized H-PCM exhibited a porous nature, continuous sponge-like and sheet-like smooth morphology, and a moderate degree of graphitization/crystallinity with oxygen-, nitrogen-, and sulfur-containing functionalities in the carbon matrix. After the structural confirmation, as-prepared H-PCM has used a sustainable electrocatalyst for hydrogen evolution reaction (HER) because the metal-free carbonaceous catalysts are one of the most promising candidates. The H-PCM showed excellent HER activities with a lowest Tafel slope of 75 mV dec−1 and durable stability in 0.5 M H2SO4 aqueous solution. Moreover, this work provides a versatile and effective strategy for designing excellent metal-free electrocatalysts from the cheapest biowaste/biomass for large-scale production of hydrogen gas through electrochemical water splitting.
Collapse
|
5
|
Nickel Nanoparticles Decorated on Glucose-Derived Carbon Spheres as a Novel, Non-Palladium Catalyst for Epoxidation of Olefin. Catalysts 2022. [DOI: 10.3390/catal12101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Carbon spheres supporting nickel nanoparticles (NPs), generated by the integration of hydrothermal and microwave irradiation techniques, catalyzed the epoxidation of 1-octene, cyclooctene, styrene, allyl alcohol, and cyclohexene. The average particle sizes of the carbon spheres (CSs) and nickel oxide species immobilized on the CSs were 240 nm and 26 nm, respectively. The fabricated composites incorporating nickel NPs showed higher activity in the cyclohexene epoxidation process. The cyclohexene conversion was enhanced by raising the Ni loading to 10%. Within 14 h, the cyclohexene conversion had grown to 98%. This robust catalytic activity can be attributed to the efficient distribution of Ni species on the CSs, the facile lowering of the surface, and the development of uniformly nanosized species. The composite exhibited good recyclability across at least five cycles (which is not a simple task involving nickel-nanoparticle-based catalysts that are employed in water), and no nickel species leached into the solution, making the total system environmentally benign and cost-effective.
Collapse
|