1
|
Wan J, Shi W, Li Y, Yu Y, Wu X, Li Z, Lee SY, Lee KH. Excellent Crystallinity and Stability Covalent-Organic Frameworks with High Emission and Anions Sensing. Macromol Rapid Commun 2022; 43:e2200393. [PMID: 35715386 DOI: 10.1002/marc.202200393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Covalent-organic frameworks (COFs) are a new class of porous crystalline frameworks with high π-conjugation and periodical skeletons. The highly ordered π-conjugation structures in some COFs allow exciton migration and energy transfer over the frameworks, which leads to good fluorescence probing ability. In this work, two COFs (TFHPB-TAPB-COF and TFHPB-TTA-COF) are successfully condensed via the Schiff base condensation reaction. The intramolecular hydrogen bonds between imine bonds and hydroxyl groups form the excited-state intramolecular proton transfer (ESIPT) strategy. Owing to intramolecular hydrogen bonds in the skeleton, the two COFs show high crystallinity, remarkable stability, and excellent luminescence. The COFs represent a good sensitivity and selectivity to fluoride anions via fluorescence turn-off. Other halogen anions (chloride, bromide, and iodine) and acid anions (nitrate and hydrogen carbonate) remain inactive. These results imply that only fluoride anion is capable of opening the hydrogen bond interaction and hence break the ESIPT strategy. The detection limit toward fluoride anion is down to nanomoles level, ranking the best performances among fluoride anion sensors systems.
Collapse
Affiliation(s)
- Jieqiong Wan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.,Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Wei Shi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yan Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yue Yu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, 563-8577, Japan
| | - Xiaohan Wu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Zhongping Li
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Seung Yong Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea.,KIURI Institute, Yonsei University, Seoul, 03722, South Korea
| | - Kyu Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|