1
|
Valle Reyes OS, Orozco-Guareño E, Hernández-Montelongo R, Alvarado Mendoza AG, Martínez Chávez L, González Núñez R, Aguilar Martínez J, Moscoso Sánchez FJ. Grafting of Lactic Acid and ε-Caprolactone onto Alpha-Cellulose and Sugarcane Bagasse Cellulose: Evaluation of Mechanical Properties in Polylactic Acid Composites. Polymers (Basel) 2024; 16:2964. [PMID: 39518174 PMCID: PMC11548187 DOI: 10.3390/polym16212964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
In this paper, we present the synthesis of composite materials comprised of α-cellulose and sugarcane bagasse cellulose fibers grafted with lactic acid and ε-caprolactone. These fibers were incorporated as reinforcements into a PLA matrix by extrusion, producing composite materials with improved mechanical properties. The grafting of lactic acid and ε-caprolactone onto the fibers was confirmed by FTIR spectroscopy, demonstrating the chemical modification of the fibers. The morphology of the fibers and composites was analyzed through scanning electron microscopy (SEM), showing that the fibers are encapsulated within the polymeric matrix. This suggests good PLA-fiber interaction for the 90 PLA/10 α-Cel, 90 PLA/10 LAC-g-α-Cel, and 90 PLA/10 ε-CL-g-α-Cel composite materials. The obtained composite materials were tested under tensile loading. Incorporating 10 wt% of LAC-g-FBA-Cel and α-Cel-g-FBA-Cel grafted fibers into the PLA matrix improved the tensile modulus by 28% and 12%, respectively, compared with PLA. The maximum tensile strength values obtained were for composite materials with 10 wt% PLA/α-Cel, LAC-g-α-Cel, and FBA-Cel with 23, 27, and 37% concerning PLA. DSC thermal studies showed a reduction in the glass transition temperature in the composites with grafted fibers. The results suggest better interfacial adhesion between the PLA matrix and both grafted and non-grafted α-cellulose fibers, which contributes to the observed improvements in the mechanical and thermal properties of the composite materials. The results demonstrate that the composites can be produced through extrusion. Once the optimal concentration has been determined, α-cellulose or sugarcane bagasse grafted with lactic acid and ε-caprolactone can be incorporated into the PLA matrix, exhibiting adjustable properties.
Collapse
Affiliation(s)
- Oscar Salvador Valle Reyes
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (O.S.V.R.); (E.O.-G.); (A.G.A.M.)
| | - Eulogio Orozco-Guareño
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (O.S.V.R.); (E.O.-G.); (A.G.A.M.)
| | - Rosaura Hernández-Montelongo
- Departamento de Bioingeniería Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico
| | - Abraham Gabriel Alvarado Mendoza
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (O.S.V.R.); (E.O.-G.); (A.G.A.M.)
| | - Liliana Martínez Chávez
- Departamento de Farmacología, Universidad de Guadalajara, Blvd. Marcelino García Barragán No. 1421, Guadalajara 44430, Mexico;
| | - Rubén González Núñez
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico;
| | - Jacobo Aguilar Martínez
- Departamento de Ciencias Tecnológicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47820, Mexico;
| | - Francisco Javier Moscoso Sánchez
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (O.S.V.R.); (E.O.-G.); (A.G.A.M.)
| |
Collapse
|
2
|
Zhan YL, Wen KC, Li ZA, Sun P, Li FQ. Dielectric and Magnetic Composites of Fe 3O 4@APNs for Superior Microwave Thermal Effect. ACS Biomater Sci Eng 2024; 10:791-799. [PMID: 38153906 DOI: 10.1021/acsbiomaterials.3c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
As for the deep tissue infections of chronic osteomyelitis, antibiotics are hard to deliver into the infected bone tissue, which makes it difficult to be cured completely in clinic. Microwave has strong penetration, and the medium can produce a good bactericidal effect through the microwave thermal effect (MTE). Here, a new microwave sensitizer (Fe3O4@APNs) was prepared and evaluated. Black phosphorus nanosheets modified with phytic acid dodecasodium (APNs) were fabricated by a liquid-phase exfoliation method that exhibited good water oxygen stability. A complex with Fe3O4 compound and APNs (Fe3O4@APNs) was formed by an ultrasonic mixing process, which showed excellent MTE (quickly increased to 53.5 °C in 5 min at 2.45 GHz, 10 W/cm2) via dielectric versus magnetic loss (reflect loss value of -5.94 dB at 2.45 GHz). The Fe3O4@APNs microwave sensitizer developed in this study has an outstanding in vitro antibacterial effect and might show promise for the treatment of chronic osteomyelitis enabled by local tissue heating via the MTE.
Collapse
Affiliation(s)
- Yan-Lei Zhan
- Department of Orthopaedics/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kai-Chao Wen
- Department of Orthopaedics/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Zheng-An Li
- Department of Orthopaedics/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Ping Sun
- Department of Orthopaedics/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Feng-Qian Li
- Department of Orthopaedics/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| |
Collapse
|
3
|
Rahimkhoei V, Padervand M, Hedayat M, Seidi F, Dawi EA, Akbari A. Biomedical applications of electrospun polycaprolactone-based carbohydrate polymers: A review. Int J Biol Macromol 2023; 253:126642. [PMID: 37657575 DOI: 10.1016/j.ijbiomac.2023.126642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Carbohydrate used in biomedical applications is influenced by numerous factors. One of the most appealing characteristic of carbohydrates is their ability to reproduce from natural resources which makes them ecologically friendly. Due to their abundance, biocompatibility, and no contamination by residual initiators, the desire for polysaccharides in medical uses is growing. Research on fiber-based materials, with a variety of medical applications including bio-functional scaffolds, continues to yield novel and intriguing findings. Almost all biopolymers of diverse structural compositions are electrospun to fulfill biomedical usage criteria, and the electrospinning technique is widely employed in biomedical technologies for both in-vivo and in-vitro therapies. Due to its biocompatibility and biodegradability, polycaprolactone (PCL) is employed in medical applications like tissue engineering and drug delivery. Although PCL nanofibers have established effects in vitro, more research is needed before their potential therapeutic application in the clinic. Here we tried to focus mainly on the carbohydrate incorporated PCL-based nanofibers production techniques, structures, morphology, and physicochemical properties along with their usage in biomedicine.
Collapse
Affiliation(s)
- Vahid Rahimkhoei
- Solid Tumor Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohsen Padervand
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O Box 55181-83111, Maragheh, Iran
| | - Mohaddeseh Hedayat
- Department of Phramacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - E A Dawi
- Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
4
|
Gussenov I, Berzhanova RZ, Mukasheva TD, Tatykhanova GS, Imanbayev BA, Sagyndikov MS, Kudaibergenov SE. Exploring Potential of Gellan Gum for Enhanced Oil Recovery. Gels 2023; 9:858. [PMID: 37998948 PMCID: PMC10671067 DOI: 10.3390/gels9110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 11/25/2023] Open
Abstract
Extensive laboratory and field tests have shown that the gelation response of gellan gum to saline water makes it a promising candidate for enhanced oil recovery (EOR). The objective of this mini-review is to evaluate the applicability of gellan gum in EOR and compare its efficiency to other precursors, in particular, hydrolyzed polyacrylamide (HPAM). At first, the "sol-gel" phase transitions of gellan gum in aqueous-salt solutions containing mono- and divalent cations are considered. Then the rheological and mechanical properties of gellan in diluted aqueous solutions and gel state are outlined. The main attention is paid to laboratory core flooding and field pilot tests. The plugging behavior of gellan in laboratory conditions due to "sol-gel" phase transition is discussed in the context of conformance control and water shut-off. Due to its higher strength, gellan gum gel provided ~6 times greater resistance to the flow of brine in a 1 mm-width fracture compared to HPAM gel. The field trials carried out in the injection and production wells of the Kumkol oilfield, situated in Kazakhstan, demonstrated that over 6 and 11 months, there was an incremental oil recovery of 3790 and 5890 tons, respectively. To put it into perspective, using 1 kg of dry gellan resulted in the incremental production of 3.52 m3 (or 22 bbls) of oil. The treatment of the production well with 1 wt.% gellan solution resulted in a considerable decrease in the water cut up to 10-20% without affecting the oil flow rate. The advantages and disadvantages of gellan compared to HPAM are analyzed together with the economic feasibility of gellan over HPAM. The potential for establishing gellan production in Kazakhstan is emphasized. It is anticipated that gellan gum, manufactured through fermentation using glucose-fructose syrup from Zharkent and Burunday corn starch plants, could be expanded in the future for applications in both the food industry and oil recovery.
Collapse
Affiliation(s)
- Iskander Gussenov
- Institute of Polymer Materials and Technology, microdistrict “Atyrau 1”, 3/1, Almaty 050019, Kazakhstan;
- Petroleum Engineering Department, Satbayev University, Satbayev str. 22a, Almaty 050043, Kazakhstan
| | - Ramza Zh. Berzhanova
- Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan; (R.Z.B.)
| | - Togzhan D. Mukasheva
- Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan; (R.Z.B.)
| | - Gulnur S. Tatykhanova
- Institute of Polymer Materials and Technology, microdistrict “Atyrau 1”, 3/1, Almaty 050019, Kazakhstan;
- Petroleum Engineering Department, Satbayev University, Satbayev str. 22a, Almaty 050043, Kazakhstan
| | - Bakyt A. Imanbayev
- KMG Engineering LLP, 35 mkr, plot 6/1, Aktau R00P0D6, Kazakhstan; (B.A.I.)
| | | | - Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology, microdistrict “Atyrau 1”, 3/1, Almaty 050019, Kazakhstan;
| |
Collapse
|
5
|
Sommer K, Van Opdenbosch D, Zollfrank C. Synthesis and Characterization of Functional Cellulose-Ether-Based PCL- and PLA-Grafts-Copolymers. Polymers (Basel) 2023; 15:polym15020455. [PMID: 36679334 PMCID: PMC9861352 DOI: 10.3390/polym15020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The use of biodegradable materials such as cellulose and polyesters can be extended through the combination, as well as modification, of these biopolymers. By controlling the molecular structure and composition of copolymers of these components, it should also be possible to tailor their material properties. We hereby report on the synthesis and characterization of cellulose-based graft copolymers with a precise molecular composition and copolymer architecture. To prepare such materials, we initially modified cellulose through the regioselective protection of the 6-OH group using trityl chloride. The 6-O protected compound was then alkylated, and deprotection at the 6-OH group provided the desired 2,3-di-O-alkyl cellulose compounds that were used as macroinitiators for ring opening polymerization. Regioselective modification was hereby necessary to obtain compounds with an exact molecular composition. Ring opening polymerization, catalyzed by Sn(Oct)2, at the primary 6-OH group of the cellulose macroinitiator, using L-lactide or ε-caprolactone, resulted in graft copolymers with the desired functionalization pattern. The materials were characterized using Fourier-transform infrared spectroscopy, 1H- and 13C- nuclear magnetic resonance spectroscopy, size exclusion chromatography as well as X-ray diffraction, and differential scanning calorimetry. PCL-based copolymers exhibited distinct melting point as well as a crystalline phase of up to 47%, while copolymers with PLA segments were highly amorphous, showing a broad amorphous reflex in the XRD spectra, and no melting or crystallization points were discernible using differential scanning calorimetry.
Collapse
|