1
|
Zhuang H, Zhang X, Wu S, Yong P, Yan H. Opportunities and challenges of foodborne polyphenols applied to anti-aging health foods. Food Sci Biotechnol 2024; 33:3445-3461. [PMID: 39493397 PMCID: PMC11525373 DOI: 10.1007/s10068-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract With the increasing proportion of the global aging population, aging mechanisms and anti-aging strategies become hot topics. Nonetheless, the safety of non-natural anti-aging active molecule and the changes in physiological function that occur during aging have not been clarified. There is therefore a need to develop safer pharmaceutical interventions for anti-aging. Numerous types of research have shown that food-derived biomolecules are of great interest due to their unique contribution to anti-aging safety issues and the prevention of degenerative diseases. Among these, polyphenolic organic compounds are widely used in anti-aging research for their ability to mitigate the physiological functional changes that occur during aging. The mechanisms include the free radical theory, immune aging theory, cellular autophagy theory, epigenetic modification theory, gut microbial effects on aging theory, telomere shortening theory, etc. This review elucidates the mechanisms underlying the anti-aging effects of polyphenols found in food-derived bioactive molecules, while also addressing the challenges associated with anti-aging pharmaceuticals. The review concludes by offering insights into the current landscape of anti-aging active molecule research, aiming to serve as a valuable resource for further scholarly inquiry. Graphical abstract
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| |
Collapse
|
2
|
Lv X, Xiang C, Zheng Y, Zhou WX, Lv XL. Recent Developments in Using Microneedle Patch Technology as a More Efficient Drug Delivery System for Treating Skin Photoaging. Clin Cosmet Investig Dermatol 2024; 17:2417-2426. [PMID: 39498279 PMCID: PMC11533892 DOI: 10.2147/ccid.s492774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024]
Abstract
Skin photoaging, resulting from prolonged exposure to ultraviolet (UV) radiation, is characterized by intricate biological changes involving oxidative damage and structural alterations. Despite an increasing demand for effective interventions, the current therapeutic options for treating skin photoaging are limited. We discovered through literature data search on PubMed that recent research has shifted its focus to the application of microneedle patches as an innovative approach to address this concern. Microneedle patches, serving as a novel transdermal delivery system, exhibit the potential to deliver bioactive substances such as cytokines, cellular vesicles, gene fragments and even alive algae to mitigate the effects of skin photoaging. This review aims to provide a comprehensive overview of recent advancements in research about utilizing microneedle patches for the treatment of skin photoaging and potential future directions in leveraging microneedle patches as clinical therapeutic agents for skin rejuvenation. Ultimately, we believe that microneedle patches have a broader application prospect in the fields of medical cosmetology and anti-photoaging.
Collapse
Affiliation(s)
- Xiong Lv
- Department of Plastic Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, People’s Republic of China
| | - Chun Xiang
- Department of Plastic Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, People’s Republic of China
| | - Yan Zheng
- Department of Plastic Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, People’s Republic of China
| | - Wan-Xuan Zhou
- Department of Plastic Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, People’s Republic of China
| | - Xu-Ling Lv
- Department of Plastic Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Li M, Lv R, Ou W, Chen S, Zhou H, Hou G, Zi X. The Potential of Co-Fermentation of Whole-Plant Cassava with Piper sarmentosum: A Comprehensive Study of Fermentation Quality, Antioxidant Activity, Bacterial Community Structure, and Microbial Ecological Networks in Novel Foods. Foods 2024; 13:2126. [PMID: 38998632 PMCID: PMC11240961 DOI: 10.3390/foods13132126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 07/14/2024] Open
Abstract
The objective of this study was to explore the preservation of food products through the co-fermentation of whole-plant cassava and Piper sarmentosum (PS) without additives. We assessed fermentation quality, antioxidant activity, bacterial community structure, function profile, and microbial ecological network features. Our results demonstrate that co-fermentation of whole-plant cassava with 10% PS significantly improves food quality. The co-fermented samples exhibited enhanced lactic acid concentrations and increased antioxidant activity, with reduced pH values and concentrations of acetic acid, butyric acid, and ammonia-N(NH3-N) compared to whole-plant cassava fermented alone. In addition, PS addition also optimized microbial community structure by elevating the total abundance of lactic acid bacteria and influenced bacterial predicted functions. Furthermore, our analysis of co-occurrence networks reveals that co-fermentation impacts microbial network features, including module numbers and bacterial relative abundances, leading to altered complexity and stability of the networks. Moreover, out study also highlights the impact of ferment undesirable bacteria like Pseudomonas aeruginosa and unclassified_Muribaculaceae playing crucial roles in microbial network complexity and stability. These findings provide valuable insights into the anaerobic fermentation process and offers strategies for regulating food fermentation quality.
Collapse
Affiliation(s)
- Mao Li
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China;
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China; (R.L.); (W.O.); (S.C.); (H.Z.); (G.H.)
| | - Renlong Lv
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China; (R.L.); (W.O.); (S.C.); (H.Z.); (G.H.)
| | - Wenjun Ou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China; (R.L.); (W.O.); (S.C.); (H.Z.); (G.H.)
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China; (R.L.); (W.O.); (S.C.); (H.Z.); (G.H.)
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China; (R.L.); (W.O.); (S.C.); (H.Z.); (G.H.)
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China; (R.L.); (W.O.); (S.C.); (H.Z.); (G.H.)
| | - Xuejuan Zi
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China;
| |
Collapse
|
4
|
Li M, Zi X, Lv R, Zhang L, Ou W, Chen S, Hou G, Zhou H. Cassava Foliage Effects on Antioxidant Capacity, Growth, Immunity, and Ruminal Microbial Metabolism in Hainan Black Goats. Microorganisms 2023; 11:2320. [PMID: 37764163 PMCID: PMC10535588 DOI: 10.3390/microorganisms11092320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cassava (Manihot esculenta Crantz) foliage is a byproduct of cassava production characterized by high biomass and nutrient content. In this study, we investigated the effects of cassava foliage on antioxidant capacity, growth performance, and immunity status in goats, as well as rumen fermentation and microbial metabolism. Twenty-five Hainan black goats were randomly divided into five groups (n = 5 per group) and accepted five treatments: 0% (T1), 25% (T2), 50% (T3), 75% (T4), and 100% (T5) of the cassava foliage silage replaced king grass, respectively. The feeding experiment lasted for 70 d (including 10 d adaptation period and 60 d treatment period). Feeding a diet containing 50% cassava foliage resulted in beneficial effects for goat growth and health, as reflected by the higher average daily feed intake (ADFI), average daily gain (ADG) and better feed conversion rate (FCR), as well as by the reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CRE), and triglycerides (TG). Meanwhile, cassava foliage improved antioxidant activity by increasing the level of glutathion peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) and lowering malondialdehyde (MDA). Moreover, feeding cassava foliage was also beneficial to immunity status by enhancing complement 3 (C3), complement 4 (C4), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM). Furthermore, the addition of dietary cassava foliage also altered rumen fermentation, rumen bacterial community composition, and metabolism. The abundance of Butyrivibrio_2 and Prevotella_1 was elevated, as were the concentrations of beneficial metabolites such as butyric acid; there was a concomitant decline in metabolites that hindered nutrient metabolism and harmed host health. In summary, goats fed a diet containing 50% cassava foliage silage demonstrated a greater abundance of Butyrivibrio_2, which enhanced the production of butyric acid; these changes led to greater antioxidant capacity, growth performance, and immunity in the goats.
Collapse
Affiliation(s)
- Mao Li
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Xuejuan Zi
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Renlong Lv
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Lidong Zhang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Wenjun Ou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Songbi Chen
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Guanyu Hou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Hanlin Zhou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| |
Collapse
|
5
|
Boonpisuttinant K, Srisuttee R, Yen Khong H, Chutoprapat R, Ruksiriwanich W, Udompong S, Chompoo W, Boonbai R, Rakkaew R, Sangsee J, Sriprasert K, Malilas W. In vitro anti-ageing activities of ethanolic extracts from Pink rambutan (Nephelium lappaceum Linn.) for skin applications. Saudi Pharm J 2023; 31:535-546. [PMID: 37063444 PMCID: PMC10102410 DOI: 10.1016/j.jsps.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
Skin ageing is characterized by features such as wrinkles, loss of elasticity, laxity, rough-textured appearance, melasma and freckles. Several researches have focused for preventing, and treating skin ageing by many natural ingredients. This study aimed to assess the anti-ageing activities for anti-skin ageing of the ethanolic extracts of Pink rambutan (PR) (Nephelium lappaceum Linn.) from leaves (L), branches (B), seeds (S), and peels from ripe (R) and young (Y) fruits. The extraction yields of all Pink Rambutan (PR) extracted by the Maceration (M) and the Soxhlet extraction (Sox) using 95% ethanol as a solvent, ranged from 10.62% to 30.63%. Flavonoids were found as the main phytochemicals in almost all the PR extracts. The PR-Y-M and PR-Y-Sox extracts gave the highest total phenolic contents by the Folin-Ciocalteu assay of 67.60 ± 4.38 mgGAE/g, and total flavonoid contents by the modified aluminum chloride colorimetric assay of 678.72 ± 23.59 mgQE/g, respectively. The PR-L-M extracts showed the highest three anti-oxidative activities; the free radical scavenging (SC50 of 0.320 ± 0.070 mg/mL), the lipid peroxidation inhibition (LC50 of 0.274 ± 0.029 mg/mL), and the metal chelation activity (MC50 of 0.203 ± 0.021 mg/mL). All the PR extracts at 0.01 and 0.1 mg/mL showed no cytotoxicity on B16F10 cells, and human skin fibroblasts, respectively. Likewise, the PR-R-Sox extract exhibited the highest anti-melanogenesis on B16F10 cells (52.7 ± 0.9%) and, the mushroom tyrosinase inhibition activity (IC50 of 0.04 ± 0.02 mg/mL), which was significantly comparable to kojic acid (p < 0.05). The PR-Y-Sox extract showed the collagen biosynthesis by the Sirius Red method, and the stimulation of anti-ageing genes (Sirt1 and Foxo1) on human skin fibroblasts by the RT-PCR method, which were similar to standards ʟ-ascorbic acid and resveratrol, respectively. This study suggests that the PR-R-Sox and PR-Y-Sox extracts can be further developed as natural anti-ageing agents for whitening and anti-wrinkle in the cosmetics, cosmeceutical, and pharmaceutical industries.
Collapse
Affiliation(s)
- Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Ratakorn Srisuttee
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Heng Yen Khong
- Faculty of Applied Sciences, Universiti Teknologi MARA, Sarawak Branch, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Sarinporn Udompong
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Wirinda Chompoo
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Rattiya Boonbai
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Rattikarl Rakkaew
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Jinapa Sangsee
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Ketsani Sriprasert
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Waraporn Malilas
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
- Corresponding author at: Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
6
|
Mohidin SRNSP, Moshawih S, Hermansyah A, Asmuni MI, Shafqat N, Ming LC. Cassava ( Manihot esculenta Crantz): A Systematic Review for the Pharmacological Activities, Traditional Uses, Nutritional Values, and Phytochemistry. J Evid Based Integr Med 2023; 28:2515690X231206227. [PMID: 37822215 PMCID: PMC10571719 DOI: 10.1177/2515690x231206227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/08/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023] Open
Abstract
Cassava (Manihot esculenta Crantz) is considered one of the essential tuber crops, serving as a dietary staple food for various populations. This systematic review provides a comprehensive summary of the nutritional and therapeutic properties of cassava, which is an important dietary staple and traditional medicine. The review aims to evaluate and summarize the phytochemical components of cassava and their association with pharmacological activities, traditional uses, and nutritional importance in global food crises. To collect all relevant information, electronic databases; Cochrane Library, PubMed, Scopus, Web of Science, Google Scholar, and Preprint Platforms were searched for studies on cassava from inception until October 2022. A total of 1582 studies were screened, while only 34 were included in this review. The results of the review indicate that cassava has diverse pharmacological activities, including anti-bacterial, anti-cancer, anti-diabetic, anti-diarrheal, anti-inflammatory, hypocholesterolemic effects, and wound healing properties. However, more studies that aim to isolate the phytochemicals in cassava extracts and evaluate their pharmacological property are necessary to further validate their medical and nutritional values.
Collapse
Affiliation(s)
| | - Said Moshawih
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Mohd Ikmal Asmuni
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Naeem Shafqat
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| |
Collapse
|
7
|
Anlas C, Bakirel T, Ustuner O, Ustun-Alkan F, Diren-Sigirci B, Koca-Caliskan U, Mancak- Karakus M, Dogan U, Ak S, Askin Akpulat H. In vitro Biological Activities and Preliminary Phytochemical Screening of Different Extracts from Achillea sintenisii Hub- Mor. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Wandee R, Sutthanut K, Songsri J, Sonsena S, Krongyut O, Tippayawat P, Tukummee W, Rittirod T. Tamarind Seed Coat: A Catechin-Rich Source with Anti-Oxidation, Anti-Melanogenesis, Anti-Adipogenesis and Anti-Microbial Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165319. [PMID: 36014557 PMCID: PMC9415986 DOI: 10.3390/molecules27165319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Tamarindus indica L. or tamarind seed is an industrial by-product of interest to be investigated for its potential and value-added application. An ethanolic tamarind seed coat (TS) extract was prepared using the maceration technique and used to determine the phytochemical composition and bioactivities. The total phenolic and flavonoid contents were determined using colorimetric methods; moreover, chemical constituents were identified and quantified compared to the standard compounds using the HPLC-UV DAD technique. Bioactivities were investigated using various models: antioxidative activity in a DPPH assay model, anti-melanogenesis in B16 melanoma cells, anti-adipogenesis in 3T3-L1 adipocytes, and anti-microbial activity against S. aureus, P. aeruginosa, E. coli, and C. albican using agar disc diffusion and microdilution methods. The results manifested a high content of catechin as a chemical constituent and multiple beneficiary bioactivities of TS extract, including superior antioxidation to ascorbic acid and catechin, comparable anti-melanogenesis to deoxyarbutin, and significant anti-adipogenesis through inhibition of pre-adipocyte differentiation and reduction of lipid and triglyceride accumulation, and a broad spectral anti-microbial activity with a selectively high susceptibility to S. aureus when compared to 1% Parabens. Conclusively, TS extract has been revealed as a potential bioactive agent as well as an alternative preservative for application in food, cosmetic, and pharmaceutical product development.
Collapse
Affiliation(s)
- Roongrawee Wandee
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khaetthareeya Sutthanut
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-43202378
| | - Jenjira Songsri
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Siriyakorn Sonsena
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ornnicha Krongyut
- Bachelor of Thai Traditional Medicine, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | | | - Wipawee Tukummee
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theera Rittirod
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
9
|
Boukhers I, Boudard F, Morel S, Servent A, Portet K, Guzman C, Vitou M, Kongolo J, Michel A, Poucheret P. Nutrition, Healthcare Benefits and Phytochemical Properties of Cassava (Manihot esculenta) Leaves Sourced from Three Countries (Reunion, Guinea, and Costa Rica). Foods 2022; 11:foods11142027. [PMID: 35885268 PMCID: PMC9315608 DOI: 10.3390/foods11142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Manihot esculenta, cassava, is an essential food crop for human consumption in many parts of the world. Besides the wide use of its roots, cassava leaves have been used locally as green vegetables and for medicinal purposes. However, nutritional health data regarding cassava leaves is limited, therefore we investigated its composition and associated potential bioactivity interest for human health. (2) Methods: Cassava leaf bioactivity investigations focused on antioxidant properties (free radical scavenging) in association with immunomodulatory activities on inflammatory murine macrophages to measure the impact of cassava extract on the production of pro-inflammatory cytokines such as Interleukin-6, Tumor Necrosis Factor alpha, Monocyte Chemoattractant Protein-1, Prostaglandin-E2 and mediators such as nitric oxide. (3) Results: Antioxidant and immunomodulatory bioactivities were significant, with a concentration-dependent inhibition of cytokines production by inflammatory macrophages; (4) Conclusions: Taken together, our results tend to suggest that Manihot esculenta leaves might be underrated regarding the potential nutrition-health interest of this vegetal matrix for both human nutrition and prophylaxis of metabolic disease with underlying low grade inflammation status.
Collapse
Affiliation(s)
- Imane Boukhers
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France; (I.B.); (F.B.); (A.S.); (K.P.); (C.G.); (J.K.); (A.M.)
| | - Frederic Boudard
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France; (I.B.); (F.B.); (A.S.); (K.P.); (C.G.); (J.K.); (A.M.)
| | - Sylvie Morel
- CEFE, Laboratoire de Botanique, Phytochimie et Mycologie, CNRS-Université de Montpellier-EPHE-IRD, 34093 Montpellier, France; (S.M.); (M.V.)
| | - Adrien Servent
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France; (I.B.); (F.B.); (A.S.); (K.P.); (C.G.); (J.K.); (A.M.)
| | - Karine Portet
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France; (I.B.); (F.B.); (A.S.); (K.P.); (C.G.); (J.K.); (A.M.)
| | - Caroline Guzman
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France; (I.B.); (F.B.); (A.S.); (K.P.); (C.G.); (J.K.); (A.M.)
| | - Manon Vitou
- CEFE, Laboratoire de Botanique, Phytochimie et Mycologie, CNRS-Université de Montpellier-EPHE-IRD, 34093 Montpellier, France; (S.M.); (M.V.)
| | - Joelle Kongolo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France; (I.B.); (F.B.); (A.S.); (K.P.); (C.G.); (J.K.); (A.M.)
| | - Alain Michel
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France; (I.B.); (F.B.); (A.S.); (K.P.); (C.G.); (J.K.); (A.M.)
| | - Patrick Poucheret
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France; (I.B.); (F.B.); (A.S.); (K.P.); (C.G.); (J.K.); (A.M.)
- Correspondence: ; Tel.: +33-141-1759-507
| |
Collapse
|