1
|
Xu X, Gai J, Li Y, Zhang Z, Wu S, Song K, Hu J, Chu Q. Integrated acetic acid and deep eutectic solvent pretreatment on poplar for co-production of xylo-oligosaccharides, fermentable sugars and lignin antioxidants/adsorbents. Int J Biol Macromol 2024; 259:129138. [PMID: 38171445 DOI: 10.1016/j.ijbiomac.2023.129138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Efficient fractionation of lignocellulosic biomass in usable forms of hemicellulose, cellulose and lignin is very important for the sustainable lignocellulosic biorefinery. Herein, poplar sawdust was pretreated with an integrated process composed of acetic acid pre-hydrolysis (170 °C, 60 min) for xylo-oligosaccharides (XOS) production and mild deep eutectic solvent (90-130 °C, 60 min) post-delignification for recovering lignin fractions, resulting in easily hydrolyzed cellulose fraction. Results showed that, after integrated pretreatment and enzymatic hydrolysis, 51 % of xylan and 92 % of glucan in raw biomass could be converted to XOS (DP 2-6) and glucose, respectively, while 71 % of the original lignin could be recovered in DES solvent. The resulting XOS were proven to ensure the growth of probiotics, Bifidobacterium adolescentis. Besides, the lignin macromolecules recovered from DES solvent showed high-purity (around 95 %), low-molecular weight (Mw around 2000), small particle size (270-170 nm) and high-PhOH (3.08 mmol/g) content, which were likely relevant to the excellent antioxidant activity (RSI = 15.16) and adsorbent activity (Pb(II) 461.89 mg/g lignin). Finally, mass balance and energy analysis revealed that the integrated pretreatment could be used as a promising approach for the production of bio-based chemicals and materials from woody biomass.
Collapse
Affiliation(s)
- Xiaojie Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China
| | - Junming Gai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China
| | - Yiran Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China
| | - Zhiheng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China
| | - Kai Song
- College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1Z4, Canada
| | - Qiulu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
2
|
Zou Z, Ismail BB, Zhang X, Yang Z, Liu D, Guo M. Improving barrier and antibacterial properties of chitosan composite films by incorporating lignin nanoparticles and acylated soy protein isolate nanogel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
Agrawal R, Kumar A, Singh S, Sharma K. Recent advances and future perspectives of lignin biopolymers. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03068-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|