1
|
Chahla C, Rima M, Mouawad C, Roufayel R, Kovacic H, El Obeid D, Sabatier JM, Luis J, Fajloun Z, El-Waly B. Effect of Apis mellifera syriaca Bee Venom on Glioblastoma Cancer: In Vitro and In Vivo Studies. Molecules 2024; 29:3950. [PMID: 39203027 PMCID: PMC11357583 DOI: 10.3390/molecules29163950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and fatal primary brain tumor. The resistance of GBM to conventional treatments is attributed to factors such as the blood-brain barrier, tumor heterogeneity, and treatment-resistant stem cells. Current therapeutic efforts show limited survival benefits, emphasizing the urgent need for novel treatments. In this context, natural anti-cancer extracts and especially animal venoms have garnered attention for their potential therapeutic benefits. Bee venom in general and that of the Middle Eastern bee, Apis mellifera syriaca in particular, has been shown to have cytotoxic effects on various cancer cell types, but not glioblastoma. Therefore, this study aimed to explore the potential of A. mellifera syriaca venom as a selective anti-cancer agent for glioblastoma through in vitro and in vivo studies. Our results revealed a strong cytotoxic effect of A. mellifera syriaca venom on U87 glioblastoma cells, with an IC50 of 14.32 µg/mL using the MTT test and an IC50 of 7.49 µg/mL using the LDH test. Cells treated with the bee venom became permeable to propidium iodide without showing any signs of early apoptosis, suggesting compromised membrane integrity but not early apoptosis. In these cells, poly (ADP-ribose) polymerase (PARP) underwent proteolytic cleavage similar to that seen in necrosis. Subsequent in vivo investigations demonstrated a significant reduction in the number of U87 cells in mice following bee venom injection, accompanied by a significant increase in cells expressing caspase-3, suggesting the occurrence of cellular apoptosis. These findings highlight the potential of A. mellifera syriaca venom as a therapeutically useful tool in the search for new drug candidates against glioblastoma and give insights into the molecular mechanism through which the venom acts on cancer cells.
Collapse
Affiliation(s)
- Charbel Chahla
- Inst Neurophysiopathol (INP), CNRS, Aix-Marseille Université, 13385 Marseille, France; (C.C.); (H.K.)
| | - Mohamad Rima
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon;
| | - Charbel Mouawad
- Laboratoire d’Histologie Embryologie Biologie de la Reproduction CECOS, Assistance Publique-Hôpitaux Universitaires Paris Centre, CHU Cochin, 75014 Paris, France;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Hervé Kovacic
- Inst Neurophysiopathol (INP), CNRS, Aix-Marseille Université, 13385 Marseille, France; (C.C.); (H.K.)
| | - Dany El Obeid
- Faculty of Agriculture & Veterinary Sciences, Lebanese University, Dekwaneh, Beirut 1100, Lebanon;
| | - Jean-Marc Sabatier
- Inst Neurophysiopathol (INP), CNRS, Aix-Marseille Université, 13385 Marseille, France; (C.C.); (H.K.)
| | - José Luis
- Inst Neurophysiopathol (INP), CNRS, Aix-Marseille Université, 13385 Marseille, France; (C.C.); (H.K.)
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| | - Bilal El-Waly
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon;
| |
Collapse
|
2
|
Yu X, Jia S, Yu S, Chen Y, Zhang C, Chen H, Dai Y. Recent advances in melittin-based nanoparticles for antitumor treatment: from mechanisms to targeted delivery strategies. J Nanobiotechnology 2023; 21:454. [PMID: 38017537 PMCID: PMC10685715 DOI: 10.1186/s12951-023-02223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
As a naturally occurring cytolytic peptide, melittin (MLT) not only exhibits a potent direct tumor cell-killing effect but also possesses various immunomodulatory functions. MLT shows minimal chances for developing resistance and has been recognized as a promising broad-spectrum antitumor drug because of this unique dual mechanism of action. However, MLT still displays obvious toxic side effects during treatment, such as nonspecific cytolytic activity, hemolytic toxicity, coagulation disorders, and allergic reactions, seriously hampering its broad clinical applications. With thorough research on antitumor mechanisms and the rapid development of nanotechnology, significant effort has been devoted to shielding against toxicity and achieving tumor-directed drug delivery to improve the therapeutic efficacy of MLT. Herein, we mainly summarize the potential antitumor mechanisms of MLT and recent progress in the targeted delivery strategies for tumor therapy, such as passive targeting, active targeting and stimulus-responsive targeting. Additionally, we also highlight the prospects and challenges of realizing the full potential of MLT in the field of tumor therapy. By exploring the antitumor molecular mechanisms and delivery strategies of MLT, this comprehensive review may inspire new ideas for tumor multimechanism synergistic therapy.
Collapse
Affiliation(s)
- Xiang Yu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China.
| | - Siyu Jia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Shi Yu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yaohui Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Chengwei Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Haidan Chen
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China.
| | - Yanfeng Dai
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China.
| |
Collapse
|
3
|
Małek A, Strzemski M, Kurzepa J, Kurzepa J. Can Bee Venom Be Used as Anticancer Agent in Modern Medicine? Cancers (Basel) 2023; 15:3714. [PMID: 37509375 PMCID: PMC10378503 DOI: 10.3390/cancers15143714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Honey bee venom in its composition contains many biologically active peptides and enzymes that are effective in the fight against diseases of various etiologies. The history of the use of bee venom for medicinal purposes dates back thousands of years. There are many reports in the literature on the pharmacological properties of bee venom and/or its main components, e.g., anti-arthritic, anti-inflammatory, anti-microbial or neuroprotective properties. In addition, both crude venom and melittin exhibit cytotoxic activity against a wide range of tumor cells, with significant anti-metastatic activity in pre-clinical studies. Due to the constantly increasing incidence of cancer, the development of new therapeutic strategies in oncology is a particular challenge for modern medicine. A review paper discusses the various properties of bee venom with an emphasis on its anticancer properties. For this purpose, the PubMed database was searched, and publications related to "bee", "venom", "cancer" from the last 10 years were selected.
Collapse
Affiliation(s)
- Agata Małek
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Joanna Kurzepa
- 1st Department of Radiology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Saghi H, Mirzavi F, Afshari AR, Jalili-Nik M, Mashkani B, Soukhtanloo M. Bee venom induces anti-tumor effects in HT-29 colon cancer cells through regulation of cell proliferation and apoptosis. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|