1
|
Ma R, Wang Y, Wang Z, Yin S, Liu Z, Yan K. Enhanced Cellular Doxorubicin Uptake via Delayed Exposure Following Nanosecond Pulsed Electric Field Treatment: An In Vitro Study. Pharmaceutics 2024; 16:851. [PMID: 39065548 PMCID: PMC11280291 DOI: 10.3390/pharmaceutics16070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The combination of nanosecond Pulsed Electric Field (nsPEF) with pharmaceuticals is a pioneering therapeutic method capable of enhancing drug uptake efficacy in cells. Utilizing nsPEFs configured at 400 pulses, an electric field strength of 15 kV/cm, a pulse duration of 100 ns, and a repetition rate of 10 pulses per second (PPS), we combined the nsPEF with a low dose of doxorubicin (DOX) at 0.5 μM. Upon verifying that cells could continuously internalize DOX from the surrounding medium within 1 h post nsPEF exposure, we set the DOX exposure period to 10 min and contrasted the outcomes of varying sequences of DOX and nsPEF administration: pulsing followed by DOX, DOX followed by pulsing, and DOX applied 40 min after pulsing. Flow cytometry, CCK-8 assays, and transmission electron microscopy (TEM) were employed to examine intracellular DOX accumulation, cell viability, apoptosis, cell cycle, and ultrastructural transformations. Our findings demonstrate that exposing cells to DOX 40 min subsequent to nsPEF treatment can effectively elevate intracellular DOX levels, decrease cell viability, and inhibit the cell cycle. This research work presents a novel approach to enhance DOX uptake efficiency with moderate conditions of both DOX and nsPEF.
Collapse
Affiliation(s)
- Rongwei Ma
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310003, China; (R.M.); (Z.W.); (K.Y.)
| | - Yubo Wang
- Key Laboratory of Multi-Organ Transplantation Research, Ministry of Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (Y.W.); (S.Y.)
| | - Zhihao Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310003, China; (R.M.); (Z.W.); (K.Y.)
| | - Shengyong Yin
- Key Laboratory of Multi-Organ Transplantation Research, Ministry of Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (Y.W.); (S.Y.)
| | - Zhen Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310003, China; (R.M.); (Z.W.); (K.Y.)
| | - Keping Yan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310003, China; (R.M.); (Z.W.); (K.Y.)
| |
Collapse
|
2
|
Radzevičiūtė E, Malyško-Ptašinskė V, Kulbacka J, Rembiałkowska N, Novickij J, Girkontaitė I, Novickij V. Nanosecond electrochemotherapy using bleomycin or doxorubicin: Influence of pulse amplitude, duration and burst frequency. Bioelectrochemistry 2022; 148:108251. [DOI: 10.1016/j.bioelechem.2022.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/08/2022] [Accepted: 08/21/2022] [Indexed: 11/02/2022]
|
3
|
Kulbacka J, Rembiałkowska N, Szewczyk A, Rossowska J, Drąg-Zalesińska M, Kulbacki M, Choromańska A. Nanosecond PEF Induces Oxidative Stress and Apoptosis via Proteasomal Activity Inhibition in Gastric Adenocarcinoma Cells with Drug Resistance. Int J Mol Sci 2022; 23:12943. [PMID: 36361727 PMCID: PMC9657809 DOI: 10.3390/ijms232112943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 08/01/2023] Open
Abstract
Nanosecond (ns) pulsed electric field (PEF) is a technology in which the application of ultra-short electrical pulses can be used to disrupt the barrier function of cell plasma and internal membranes. Disruptions of the membrane integrity cause a substantial imbalance in cell homeostasis in which oxidative stress is a principal component. In the present study, nsPEF-induced oxidative stress was investigated in two gastric adenocarcinoma cell lines (EPG85-257P and EPG85-257RDB) which differ by their sensitivity to daunorubicin. Cells were exposed to 200 pulses of 10 ns duration, with the amplitude and pulse repetition frequency at 1 kHz, with electric field intensity varying from 12.5 to 50 kV/cm. The electroporation buffer contained either 1 mM or 2 mM calcium chloride. CellMask DeepRed visualized cell plasma permeabilization, Fluo-4 was used to visualize internal calcium ions content, and F-actin was labeled with AlexaFluor®488 for the cytoskeleton. The cellular viability was determined by MTT assay. An alkaline and neutral comet assay was employed to detect apoptotic and necrotic cell death. The luminescent method estimated the modifications in GSSG/GSH redox potential and the imbalance of proteasomal activity (chymotrypsin-, trypsin- and caspase-like). The reactive oxygen species (ROS) level was measured by flow cytometry using dihydroethidium (DHE) dye. Morphological visualization indicated cell shrinkage, affected cell membranes (characteristic bubbles and changed cell shape), and the reorganization of actin fibers with sites of its dense concentration; the effect was more intense with the increasing electric field strength. The most significant decrease in cell viability and GSSG/GSH redox potential was noted at the highest amplitude of 50 kV/cm, and calcium ions amplified this effect. nsPEF, particularly with calcium ions, inhibited proteasomal activities, resulting in increased protein degradation. nsPEF increased the percentage of apoptotic cells and ROS levels. The EPG85-257 RDB cell line, which is resistant to standard chemotherapy, was more sensitive to applied nsPEF protocols. The applied nsPEF method disrupted the metabolism of cancer cells and induced apoptotic cell death. The nsPEF ability to cause apoptosis, oxidative stress, and protein degradation make the nsPEF methodology a suitable alternative to current anticancer pharmacological methods.
Collapse
Affiliation(s)
- Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, 50-335 Wroclaw, Poland
| | - Joanna Rossowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embryology, Division of Human Morpholog and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marek Kulbacki
- Polish-Japanese Academy of Information Technology, 02-008 Warsaw, Poland
- DIVE IN AI, 53-307 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Guo XW, Li SQ, Lei RE, Ding Z, Hu BL, Lin R. Tumor-infiltrating immune cells based TMEscore and related gene signature is associated with the survival of CRC patients and response to fluoropyrimidine-based chemotherapy. Front Oncol 2022; 12:953321. [PMID: 36110947 PMCID: PMC9468757 DOI: 10.3389/fonc.2022.953321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTumor-infiltrating immune cells (TIICs) are associated with chemotherapy response. This study aimed to explore the prognostic value of a TIIC-related tumor microenvironment score (TMEscore) in patients with colorectal cancer (CRC) who underwent chemotherapy and construct a TMEscore-related gene signature to determine its predictive value.MethodsGene profiles of patients who underwent fluoropyrimidine-based chemotherapy were collected, and their TIIC fractions were calculated and clustered. Differentially expressed genes (DEGs) between clusters were used to calculate the TMEscore. The association between the TMEscore, chemotherapy response, and survival rate was analyzed. Machine learning methods were used to identify key TMEscore-related genes, and a gene signature was constructed to verify the predictive value.ResultsTwo clusters based on the TIIC fraction were identified, and the TMEscore was calculated based on the DEGs of the two clusters. The TMEscore was higher in patients who responded to chemotherapy than in those who did not, and was associated with the survival rate of patients who underwent chemotherapy. Three machine learning methods, support vector machine (SVM), decision tree (DT), and Extreme Gradient Boosting (XGBoost), identified three TMEscore-related genes (ADH1C, SLC26A2, and NANS) associated with the response to chemotherapy. A TMEscore-related gene signature was constructed, and three external cohorts validated that the gene signature could predict the response to chemotherapy. Five datasets and clinical samples showed that the expression of the three TMEscore-related genes was increased in tumor tissues compared to those in control tissues.ConclusionsThe TIIC-based TMEscore was associated with the survival of CRC patients who underwent fluoropyrimidine-based chemotherapy, and predicted the response to chemotherapy. The TMEscore-related gene signature had a better predictive value for response to chemotherapy than for survival.
Collapse
Affiliation(s)
- Xian-Wen Guo
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Si-Qi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Rong-E Lei
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Ding
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bang-li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Bang-li Hu, ; Rong Lin,
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bang-li Hu, ; Rong Lin,
| |
Collapse
|