1
|
Borah B, Chowhan LR. Photoredox-Catalyzed Cross-Coupling of In Situ Generated Quinoxalinones with Indoles for the Synthesis of Tertiary Alcohols. J Org Chem 2024; 89:14740-14754. [PMID: 39374938 DOI: 10.1021/acs.joc.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A visible light-driven photoredox-catalyzed direct C(sp2)-H functionalization of N-H free indoles with quinoxalinones generated in situ from 2,2-dihydroxy-1H-indene-1,3(2H)-dione and phenylene-1,2-diamines has been reported with the aid of Na2-Eosin Y as the photocatalyst and the Hünig base as the sacrificial electron and proton donor. The reaction provides easy access to a variety of quaternary-centered C-3 selective indole-substituted tertiary alcohols in good yields. Mechanistic studies demonstrated the realization of photoredox-catalyzed in situ quinoxalinone formation and their proton-coupled single electron reduction to the corresponding ketyl radicals followed by cross-coupling with indoles. The potential applications of the synthesized tertiary alcohols in photoacid-catalyzed carbon-carbon and carbon-sulfur bond-forming reactions feature the key findings of the present work.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
- Department of Chemistry, Royal School of Applied & Pure Sciences, The Assam Royal Global University, Guwahati, Assam 781035, India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
- School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| |
Collapse
|
2
|
Das S. Visible-Light-Induced Dearomative Annulation of Indoles toward Stereoselective Formation of Fused- and Spiro Indolines. ACS OMEGA 2024; 9:36023-36042. [PMID: 39220487 PMCID: PMC11360027 DOI: 10.1021/acsomega.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Dearomatization approaches are attractive for their abilities to transform simple, planar arenes into complex, three-dimensional architectures. In particular, visible-light driven dearomatization strategies are significant because of their mild, green, and sustainable nature, enabling the fabrication of new chemical bonds via an electron transfer or energy transfer process. Indole compounds, being potentially bioactive and readily accessible, can be employed efficiently as building blocks for constructing diverse annulated frameworks under photocatalysis. Highly stereoselective radical cascade reactions of appropriate indole systems can provide complex cyclic scaffolds bearing multiple stereocenters. In fact, the past few years have witnessed the renaissance of dearomative cycloadditions of indoles via visible-light-induced photocatalysis. The present review highlights recent advances (2019-mid 2024) in visible-light-driven dearomative annulation of indoles leading to formation of polycyclic indolines, including angularly fused and spiro indolines. Most of the reactions described in this review are simple, providing quick access to the desired products. Additionally, characteristic reaction mechanisms are offered to provide an understand of how indole scaffolds show distinctive reactivity under photocatalytic conditions.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, North 24 Parganas, West Bengal 743165, India
| |
Collapse
|
3
|
Arcadi A, Aschi M, Chiarini M, Fabrizi G, Fochetti A, Goggiamani A, Iavarone F, Iazzetti A, Serraiocco A, Zoppoli R. Experimental Results and Mechanistic Insights on the Reactions of Indolylmethyl Acetates with Soft Carbon Pronucleophiles. ACS OMEGA 2024; 9:28450-28462. [PMID: 38973837 PMCID: PMC11223261 DOI: 10.1021/acsomega.4c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 07/09/2024]
Abstract
The palladium-catalyzed reaction of N-protected 2-indolylmethyl acetates with soft carbon pronucleophiles is described. Besides the formation of the expected coupling reaction at the C1' position, unprecedented attack at the C3 position of the plausible η3-indolyl-palladium intermediate has been observed, and the selectivity control C1'/C3 seems to depend on the nature of the protecting group and ligand. The reactivity of 3-indolylmethyl acetates has also been also investigated. Quantum chemical calculations support the experimental results.
Collapse
Affiliation(s)
- Antonio Arcadi
- Dipartimento
di Scienze Fisiche e Chimiche, Università
degli Studi di L’Aquila; Via Vetoio, 67100 Coppito, AQ, Italy
| | - Massimiliano Aschi
- Dipartimento
di Scienze Fisiche e Chimiche, Università
degli Studi di L’Aquila; Via Vetoio, 67100 Coppito, AQ, Italy
| | - Marco Chiarini
- Dipartimento
di Bioscienze e Tecnologie Agro-alimentari e Ambientali, Università di Teramo, via R. Balzarini, 1, 64100 Teramo, TE, Italy
| | - Giancarlo Fabrizi
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza,
Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Andrea Fochetti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza,
Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonella Goggiamani
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza,
Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Federica Iavarone
- Dipartimento
di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy
- Policlinico
Universitario ’A. Gemelli’ Foundation-IRCCS, Rome 00168, Italy
| | - Antonia Iazzetti
- Dipartimento
di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy
- Policlinico
Universitario ’A. Gemelli’ Foundation-IRCCS, Rome 00168, Italy
| | - Andrea Serraiocco
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza,
Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Roberta Zoppoli
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza,
Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Li K, Zhang Y, Hong Z, Yu Z, Liu X, Duan Z, Gao W, Tang L, Lv Y, Fan Z. Design, Synthesis and Fungicidal Activity of Ester Derivatives of 4-(3,4-Dichloroisothiazole) 7-Hydroxy Coumarin. Molecules 2023; 28:5205. [PMID: 37446868 DOI: 10.3390/molecules28135205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The development of new fungicides is vital for safeguarding crops and ensuring sustainable agriculture. Building on our previous finding that 4-(3,4-dichloroisothiazole)-7-hydroxy coumarins can be used as fungicidal leads, 44 novel coumarin ester derivatives were designed and synthesized to evaluate whether esterification could enhance their fungicidal activity. In vitro fungicidal bioassays indicated that compound 2ai displayed good activity against Alternaria solani, Botrytis cinereal, Cercospora arachidicola, Physalospora piricola and Sclerotinia sclerotiorum, with an EC50 value ranging from 2.90 to 5.56 μg/mL, comparable to the lead compound 1a, with its EC50 value ranging from 1.92 to 9.37 μg/mL. In vivo bioassays demonstrated that compounds 1a, 2ar and 2bg showed comparable, excellent efficacy against Pseudoperonospora cubensis at a dose of 25 µg/mL. Our research shows that the esterification of 4-(3,4-dichloroisothiazole) 7-hydroxycoumarins results in a fungicidal activity equivalent to that of its lead compounds. Furthermore, our density functional theory (DFT) calculations and 3D-QSAR modeling provide a rational explanation of the structure-activity relationship and offer valuable insights to guide further molecular design.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zeyu Hong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoyu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhihong Duan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - You Lv
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Zeng M, Chen J, Li F, Li H, Zhao L, Jiang D, Dai J, Liu W. Ruthenium-Catalyzed Oxidative Synthesis of N-(2-triazine)indoles by C-H Activation. Molecules 2023; 28:molecules28093676. [PMID: 37175086 PMCID: PMC10179826 DOI: 10.3390/molecules28093676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
1,3,5 triazines, especially indole functionalized triazine derivatives, exhibit excellent activities, such as anti-tumor, antibacterial, and anti-inflammatory activities. Traditional methods for the synthesis of N-(2-triazine) indoles suffer from unstable materials and tedious operations. Transition-metal-catalyzed C-C/C-N coupling provides a powerful protocol for the synthesis of indoles by the C-H activation strategy. Here, we report the efficient ruthenium-catalyzed oxidative synthesis of N-(2-triazine) indoles by C-H activation from alkynes and various substituted triazine derivatives in a moderate to good yield, and all of the N-(2-triazine) indoles were characterized by 1H NMR, 13C NMR, and HRMS. This protocol can apply to the gram-scale synthesis of the N-(2-triazine) indole in a moderate yield. Moreover, the reaction is proposed to be performed via a six-membered ruthenacycle (II) intermediate, which suggests that the triazine ring could offer chelation assistance for the formation of N-(2-triazine) indoles.
Collapse
Affiliation(s)
- Ming Zeng
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Jiaqi Chen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Fengye Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Haojie Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Lan Zhao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Dengzhao Jiang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Jun Dai
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Wenbo Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| |
Collapse
|
6
|
Copper‐mediated intermolecular C−H aminohalogenation of indoles at room temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|