1
|
Naseeb M, Albajri E, Almasaudi A, Alamri T, Niyazi HA, Aljaouni S, Mohamed AB, Niyazi HA, Ali AS, Shaker Ali S, Saber SH, Abuaraki HA, Haque S, Harakeh S. Rutin Promotes Wound Healing by Inhibiting Oxidative Stress and Inflammation in Metformin-Controlled Diabetes in Rats. ACS OMEGA 2024; 9:32394-32406. [PMID: 39100330 PMCID: PMC11292823 DOI: 10.1021/acsomega.3c05595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 08/06/2024]
Abstract
Diabetes mellitus (DM) is a metabolic disorder with a notable increase in global incidence in recent years. Individuals diagnosed with diabetes are at an elevated risk of morbidity and mortality compared with the general population. For several years, the potential of phytochemicals as anti-inflammatory agents to improve the healing of diabetic wounds has been under investigation. Rutin, a flavonoid, is a particularly promising candidate for use in wound healing. Our study aims to investigate the potential impact of a topical application of rutin nanoformulation on wound healing in streptozotocin (STZ)-induced hyperglycemic rats controlled with metformin, with a focus on its anti-inflammatory and antioxidant properties. Rats are randomized into 3 groups. GI: diabetic control group; wound untreated. GII: diabetes and rutin-NP-treated wound. GIII: diabetic + β-sitosterol-treated wound. The findings suggest that topical application of rutin-NPs has the potential to enhance the wound-healing process by attenuating oxidative stress, as evidenced by restoring GSH, CAT, and SOD antioxidants, and decreasing MDA production mediated by Nrf2 activation. Also, inflammation is suppressed, as indicated by the decreased CRP, IL-1β, IL-6, and TNF-α levels. Molecular docking data confirm the biological data of rutin, where rutin is docked into the catalytic site of the X-ray crystallographic structures of CRP, Keap-1, IL-1β, IL-6, and TNF-α via grid-based ligand docking. The binding affinity and binding energy of ligand-protein interactions demonstrate the affinity and binding to the specifically selected proteins.
Collapse
Affiliation(s)
- Manal Naseeb
- Department
of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eram Albajri
- Department
of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Arwa Almasaudi
- Department
of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Alamri
- Family
and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hatoon A. Niyazi
- Department
of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Soad Aljaouni
- Department
of Haematology/Pediatric Oncology, KAUH, Faculty of Medicine (FM), KAU, Jeddah 21589, Saudi Arabia
- Yousef
Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application,
Faculty of Medicine, KAU, Jeddah 21589, Saudi Arabia
| | - Abdulrahman B.
O. Mohamed
- Department
of Pharmacology, Faculty of Medicine, King
Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
(SA)
| | - Hanouf A. Niyazi
- Department
of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed S. Ali
- Department
of Pharmacology, Faculty of Medicine, King
Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
(SA)
| | - Soad Shaker Ali
- Department
of Anatomy, Faculty of Medicine, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Saber H. Saber
- Laboratory
of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 2063045, Egypt
| | - Huda Ahmed Abuaraki
- Animal
Unit, King Fahd Medical Research Center, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert
and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab
Emirates
| | - Steve Harakeh
- King
Fahd Medical Research Center, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Yousef
Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application,
Faculty of Medicine, KAU, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
3
|
Teh HX, Phang SJ, Looi ML, Kuppusamy UR, Arumugam B. Molecular pathways of NF-ĸB and NLRP3 inflammasome as potential targets in the treatment of inflammation in diabetic wounds: A review. Life Sci 2023; 334:122228. [PMID: 37922981 DOI: 10.1016/j.lfs.2023.122228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Diabetic wounds are slow healing wounds characterized by disordered healing processes and frequently take longer than three months to heal. One of the defining characteristics of impaired diabetic wound healing is an abnormal and unresolved inflammatory response, which is primarily brought on by abnormal macrophage innate immune signaling activation. The persistent inflammatory state in a diabetic wound may be attributed to inflammatory pathways such as nuclear factor kappa B (NF-ĸB) and nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, which have long been associated with inflammatory diseases. Despite the available treatments for diabetic foot ulcers (DFUs) that include debridement, growth factor therapy, and topical anti-bacterial agents, successful wound healing is still hampered. Further understanding of the molecular mechanism of these pathways could be useful in designing potential therapeutic targets for diabetic wound healing. This review provides an update and novel insights into the roles of NF-ĸB and NLRP3 pathways in the molecular mechanism of diabetic wound inflammation and their potential as therapeutic targets in diabetic wound healing.
Collapse
Affiliation(s)
- Huey Xhin Teh
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shou Jin Phang
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mee Lee Looi
- Centre for Future Learning, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bavani Arumugam
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Khamis T, Alsemeh AE, Alanazi A, Eltaweel AM, Abdel-Ghany HM, Hendawy DM, Abdelkhalek A, Said MA, Awad HH, Ibrahim BH, Mekawy DM, Pascu C, Florin C, Arisha AH. Breast Milk Mesenchymal Stem Cells and/or Derived Exosomes Mitigated Adenine-Induced Nephropathy via Modulating Renal Autophagy and Fibrotic Signaling Pathways and Their Epigenetic Regulations. Pharmaceutics 2023; 15:2149. [PMID: 37631363 PMCID: PMC10458733 DOI: 10.3390/pharmaceutics15082149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic kidney disease (CKD), a global health concern, is highly prevalent among adults. Presently, there are limited therapeutic options to restore kidney function. This study aimed to investigate the therapeutic potential of breast milk mesenchymal stem cells (Br-MSCs) and their derived exosomes in CKD. Eighty adult male Sprague Dawley rats were randomly assigned to one of six groups, including control, nephropathy, nephropathy + conditioned media (CM), nephropathy + Br-MSCs, nephropathy + Br-MSCs derived exosomes (Br-MSCs-EXOs), and nephropathy + Br-MSCs + Br-MSCs-EXOs. Before administration, Br-MSCs and Br-MSCs-EXOs were isolated, identified, and labeled with PKH-26. SOX2, Nanog, and OCT3/4 expression levels in Br-MSCs and miR-29b, miR-181, and Let-7b in both Br-MSCs and Br-MSCs-EXOs were assayed. Twelve weeks after transplantation, renal function tests, oxidative stress, expression of the long non-coding RNA SNHG-7, autophagy, fibrosis, and expression of profibrotic miR-34a and antifibrotic miR-29b, miR-181, and Let-7b were measured in renal tissues. Immunohistochemical analysis for renal Beclin-1, LC3-II, and P62, Masson trichome staining, and histopathological examination of kidney tissues were also performed. The results showed that Br-MSCs expressed SOX2, Nanog, and OCT3/4, while both Br-MSCs and Br-MSCs-EXOs expressed antifibrotic miR-181, miR-29b, and Let-7b, with higher expression levels in exosomes than in Br-MSCs. Interestingly, the administration of Br-MSCs + EXOs, EXOs, and Br-MSCs improved renal function tests, reduced renal oxidative stress, upregulated the renal expression of SNHG-7, AMPK, ULK-1, Beclin-1, LC3, miR-29b, miR-181, Let-7b, and Smad-7, downregulated the renal expression of miR-34a, AKT, mTOR, P62, TGF-β, Smad-3, and Coli-1, and ameliorated renal pathology. Thus, Br-MSCs and/or their derived exosomes appear to reduce adenine-induced renal damage by secreting antifibrotic microRNAs and potentiate renal autophagy by modulating SNHG-7 expression.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asma Alanazi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Asmaa Monir Eltaweel
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Heba M. Abdel-Ghany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Doaa M. Hendawy
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Adel Abdelkhalek
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
| | - Mahmoud A. Said
- Zagazig University Hospital, Zagazig University, Zagazig 44511, Egypt
| | - Heba H. Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Basma Hamed Ibrahim
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Dina Mohamed Mekawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Corina Pascu
- Faculty of Veterinary Medicine, University of Life Sciences, King Mihai I from Timisoara [ULST], Aradului St. 119, 300645 Timisoara, Romania;
| | - Crista Florin
- Department of Soil Science, Faculty of Agriculture, University of Life Sciences, King Mihai I from Timisoara [ULST], Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
5
|
Ligament Alteration in Diabetes Mellitus. J Clin Med 2022; 11:jcm11195719. [PMID: 36233586 PMCID: PMC9572847 DOI: 10.3390/jcm11195719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Connective tissue ageing is accelerated by the progressive accumulation of advanced glycation end products (AGEs). The formation of AGEs is characteristic for diabetes mellitus (DM) progression and affects only specific proteins with relatively long half-lives. This is the case of fibrillar collagens that are highly susceptible to glycation. While collagen provides a framework for plenty of organs, the local homeostasis of specific tissues is indirectly affected by glycation. Among the many age- and diabetes-related morphological changes affecting human connective tissues, there is concurrently reduced healing capacity, flexibility, and quality among ligaments, tendons, bones, and skin. Although DM provokes a wide range of known clinical disorders, the exact mechanisms of connective tissue alteration are still being investigated. Most of them rely on animal models in order to conclude the patterns of damage. Further research and more well-designed large-cohort studies need to be conducted in order to answer the issue concerning the involvement of ligaments in diabetes-related complications. In the following manuscript, we present the results from experiments discovering specific molecules that are engaged in the degenerative process of connective tissue alteration. This review is intended to provide the report and sum up the investigations described in the literature concerning the topic of ligament alteration in DM, which, even though significantly decreasing the quality of life, do not play a major role in research.
Collapse
|
6
|
He T, Sun P, Liu B, Wan S, Fang P, Chen J, Huang G, Min W. Puffball spores improve wound healing in a diabetic rat model. Front Endocrinol (Lausanne) 2022; 13:942549. [PMID: 36120443 PMCID: PMC9471372 DOI: 10.3389/fendo.2022.942549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent chronic oxidative stress is a primary pathogenic characteristics of diabetic foot ulcers. Puffball spores are a traditional Chinese medicine used to treat diabetic foot ulcers infections and bedsores. However, their effects against diabetic wounds and the mechanism underlying these effects remain largely unknown. The present study explored the effectiveness of puffball spores in diabetic wound treatment and the mechanisms underlying their effects. Sprague-Dawley rats with streptozotocin (STZ)-induced diabetes were treated with puffball spores to ascertain whether they accelerated wound healing.Real-time quantitative PCR, western blotting, hematoxylin-eosin and Masson's trichrome staining, immunohistochemistry analysis, and immunofluorescence assays were performed. As indicated by wound and serum histology and biochemical analyses, the puffball spores accelerated wound healing by activating Akt/Nrf2 signaling and promoting the expression of its downstream antioxidant genes, markedly stimulating antioxidant activity and enhanceing angiogenesis and collagen deposition. Our findings showed that puffball spores could accelerate diabetic wound healing, enhance antioxidant ability, promote the expression of vascular markers, and suppress inflammation, thus providing a theoretical basis for the treatment of diabetic and refractory wounds.
Collapse
Affiliation(s)
- Tangtang He
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengfei Sun
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Liu
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiwei Wan
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guicheng Huang
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Wen Min, ; Guicheng Huang,
| | - Wen Min
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Wen Min, ; Guicheng Huang,
| |
Collapse
|