1
|
Tello-Salgado I, Torres-Obando A, Mir-Garcia M, Guzmán-Razón V, Urquiza VN, Nava-García E, Montiel-Arcos E, Díaz-Hernández MT, Mojica-Cardoso C, Contreras Ochoa CO. Cytotoxicity and Cell Death Induction on a Cervical Cancer Cell Line by Crude Extracellular Product of Omphalotus nidiformis (Agaricomycetes) Mycelium. Int J Med Mushrooms 2025; 27:35-44. [PMID: 39819521 DOI: 10.1615/intjmedmushrooms.2024057069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Fungi have proved to be useful sources of compounds with antineoplastic properties. Although several metabolites isolated from species of the genus Omphalotus have shown cytotoxic effects on tumor cell lines. Few works have studied Omphalotus nidiformis. The activity of a whole crude extracellular product of a O. nidiformis micelyum strain is reported herein; this crude extract was able to reduce viability of cervical cancer HeLa cells (78% to 29%) after 24 h of exposure. Upon fractionation with dichloromethane, the fraction F1 was also capable of inhibiting cell viability, but the fraction F2 showed no effect. Both the crude extracellular product and F1 induced time- and concentration-dependent cell death by apoptosis through activation of caspase-3/7; in addition, both products induced a 3.5- to 5-fold increase in autophagy. The major components identified in both extracts by gas chromatography/mass spectrometry were 9-octadecenamide, tetradecanamide, hexadecanamide, and squalene, which could be responsible for the cytotoxic effect. Fungal metabolites with cytotoxic activity could be used in the future in combination with antineoplastic drugs for cancer treatment.
Collapse
Affiliation(s)
- Isaac Tello-Salgado
- Laboratorio de Micología, Centro de Investigaciones Biológicas, Cuernavaca, Morelos CP 62209, Mexico
| | - Alexzandra Torres-Obando
- Laboratorio de Micología, Centro de Investigaciones Biológicas, Cuernavaca, Morelos CP 62209, Mexico
| | - Marisol Mir-Garcia
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos CP 62100, Mexico
| | - Vanessa Guzmán-Razón
- Laboratorio de Micología, Centro de Investigaciones Biológicas, Cuernavaca, Morelos CP 62209, Mexico
| | - Veronica-Nuñez Urquiza
- Laboratorio de Micología, Centro de Investigaciones Biológicas, Cuernavaca, Morelos CP 62209, Mexico
| | - Elizabeth Nava-García
- Laboratorio de Micología, Centro de Investigaciones Biológicas, Cuernavaca, Morelos CP 62209, Mexico
| | - Elizur Montiel-Arcos
- Centro de Investigaciones Biologicas, Universidad Autonoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa 62209 Cuernavaca, Morelos, México
| | - María T Díaz-Hernández
- Laboratorio de Micología, Centro de Investigaciones Biológicas, Cuernavaca, Morelos CP 62209, Mexico
| | - Carlos Mojica-Cardoso
- Laboratorio de Patología. Hospital del Niño y Adolescente Morelense, Morelos CP 62765, Mexico
| | | |
Collapse
|
2
|
Chen Q, Song Y, An Y, Lu Y, Zhong G. Mechanisms and Impact of Rhizosphere Microbial Metabolites on Crop Health, Traits, Functional Components: A Comprehensive Review. Molecules 2024; 29:5922. [PMID: 39770010 PMCID: PMC11679325 DOI: 10.3390/molecules29245922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Current agricultural practices face numerous challenges, including declining soil fertility and heavy reliance on chemical inputs. Rhizosphere microbial metabolites have emerged as promising agents for enhancing crop health and yield in a sustainable manner. These metabolites, including phytohormones, antibiotics, and volatile organic compounds, play critical roles in promoting plant growth, boosting resistance to pathogens, and improving resilience to environmental stresses. This review comprehensively outlines the mechanisms through which rhizosphere microbial metabolites influence crop health, traits, functional components, and yield. It also discusses the potential applications of microbial secondary metabolites in biofertilizers and highlights the challenges associated with their production and practical use. Measures to overcome these challenges are proposed, alongside an exploration of the future development of the functional fertilizer industry. The findings presented here provide a scientific basis for utilizing rhizosphere microbial metabolites to enhance agricultural sustainability, offering new strategies for future crop management. Integrating these microbial strategies could lead to increased crop productivity, improved quality, and reduced dependence on synthetic chemical inputs, thereby supporting a more environmentally friendly and resilient agricultural system.
Collapse
Affiliation(s)
- Qingxia Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guohua Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Zhang Y, Yu W, Lu Y, Wu Y, Ouyang Z, Tu Y, He B. Epigenetic Regulation of Fungal Secondary Metabolism. J Fungi (Basel) 2024; 10:648. [PMID: 39330408 PMCID: PMC11433216 DOI: 10.3390/jof10090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Secondary metabolism is one of the important mechanisms by which fungi adapt to their living environment and promote survival and reproduction. Recent studies have shown that epigenetic regulation, such as DNA methylation, histone modifications, and non-coding RNAs, plays key roles in fungal secondary metabolism and affect fungal growth, survival, and pathogenicity. This review describes recent advances in the study of epigenetic regulation of fungal secondary metabolism. We discuss the way in which epigenetic markers respond to environmental changes and stimulate the production of biologically active compounds by fungi, and the feasibility of these new findings applied to develop new antifungal strategies and optimize secondary metabolism. In addition, we have deliberated on possible future directions of research in this field. A deeper understanding of epigenetic regulatory networks is a key focus for future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yayi Tu
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| | - Bin He
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| |
Collapse
|
4
|
Samia ALKHALILS. EFFECT OF PENICILLIUM SPECIES ON THE ANTIBIOTIC RESISTANCE PROFILE OF ALCALIGENES FAECALIS. Afr J Infect Dis 2024; 18:8-18. [PMID: 38606189 PMCID: PMC11004782 DOI: 10.21010/ajidv18i2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 04/13/2024] Open
Abstract
Background Infectious diseases due to antibiotic resistant pathogens are a global public health problem. This study aimed at determining the potential effect of bacterial-fungal interaction on the antibiotic susceptibility profile of Alcaligenes faecalis. Materials and Methods Alcaligenes faecalis was isolated from water samples. The isolate was identified using the conventional biochemical tests and the 16S rRNA molecular sequencing technique. Additionally, Penicillium species was isolated and identified based on colony morphological characteristics and microscopic features. Standardized isolates were co-cultured in broth medium. Antibiotic susceptibility evaluation of the Alcaligenes faecalis from the co-culture and the original Alcaligenes faecalis was carried out using the Kirby bauer disk diffusion method. Results The antibiotic susceptibility profile of Alcaligenes faecalis before and after co-culture remained largely unchanged except in the case of chloramphenicol, where the isolate showed reduced susceptibility. Molecular analysis of resistance gene revealed the absence of tested gene encoding antibiotic resistance, including the streptomycin resistance (str) genes (stra and strb) and the erythromycin resistance methylase (erm) gene. Conclusion The result of this study showed that there is a minimal influence of Penicillium cultures on the susceptibility of A. faecalis. Further research involving a wide spectrum of microorganisms and their interactions should be conducted to acquire a thorough understanding of the influence of microbial interactions on antibiotic susceptibility profiles in order to pave way for novel strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- ALKHALIL S. Samia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Lee BY, Chen PL, Chen CY. Suppression of Strawberry Anthracnose by Paenibacillus polymyxa TP3 In Situ and from a Distance. PLANT DISEASE 2024; 108:700-710. [PMID: 37580883 DOI: 10.1094/pdis-08-23-1499-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Strawberry is a popular fruit with valuable nutrition and an attractive fragrance, but its production and propagation are limited by various diseases, including anthracnose and gray mold. For disease management, biological control measures are environmentally friendly and good alternatives to fungicides to avoid crop losses, reduce carbon emissions, and improve food safety. In this study, Paenibacillus polymyxa TP3, which originated from the strawberry phyllosphere, was shown to antagonize the anthracnose fungal pathogen Colletotrichum siamense and reduce leaf symptoms on strawberry plants. Several mass spectra corresponding to fusaricidin were detected in the confrontation assay of P. polymyxa TP3 and C. siamense by image mass spectrometry. The transcription of fusA and fusG in the fusaricidin biosynthesis gene cluster increased while P. polymyxa TP3 was cultured in the medium containing the culture filtrate of C. siamense, as detected by reverse-transcription polymerase chain reaction, indicating the involvement of fusaricidins in P. polymyxa TP3 antagonism against the anthracnose pathogen. Further disease control assays demonstrated the time frame and spatial mode of P. polymyxa TP3-induced systemic resistance of strawberry against C. siamense. The transcript level of the marker gene FaPDF1.2 of the jasmonic acid pathway increased in strawberry leaves after drenching treatment with P. polymyxa TP3, and the callose deposition was enhanced by further flg22 treatment. In addition, P. polymyxa TP3 treatments of the strawberry mother plants reduced C. siamense infection in the daughter plants, which would be a potent feature for the application of P. polymyxa TP3 in strawberry nurseries and fields to reduce the impact of diseases, especially anthracnose.
Collapse
Affiliation(s)
- Bo-Yi Lee
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, Taiwan, Republic of China
| | - Po-Liang Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, Taiwan, Republic of China
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, Taiwan, Republic of China
- Master Program for Plant Medicine, National Taiwan University, Taipei 106319, Taiwan, Republic of China
| |
Collapse
|
6
|
Hamed AA, Ghareeb MA, Kelany AK, Abdelraof M, Kabary HA, Soliman NR, Elawady ME. Induction of antimicrobial, antioxidant metabolites production by co-cultivation of two red-sea-sponge-associated Aspergillus sp. CO2 and Bacillus sp. COBZ21. BMC Biotechnol 2024; 24:3. [PMID: 38233817 PMCID: PMC10795289 DOI: 10.1186/s12896-024-00830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
The growing spread of infectious diseases has become a potential global health threat to human beings. According to WHO reports, in this study, we investigated the impact of co-cultivating the isolated endophytic fungus Aspergillus sp. CO2 and Bacillus sp. COBZ21 as a method to stimulate the production of natural bioactive substances. (GC/MS)-based metabolomics profiling of two sponge-associated microbes, Aspergillus sp. CO2 and Bacillus sp. COBZ21, revealed that the co-culture of these two isolates induced the accumulation of metabolites that were not traced in their axenic cultures. By detection of different activities of extracts of Bacillus sp. COBZ21 and Aspergillus sp. CO2 and coculture between Bacillus sp. COBZ21 and Aspergillus sp. CO2. It was noted that the coculture strategy was the reason for a notable increase in some different activities, such as the antimicrobial activity, which showed potent activity against Escherichia coli ATCC 25,922, Staphylococcus aureus NRRLB-767, and Candida albicans ATCC 10,231. The antibiofilm activity showed significant biofilm inhibitory activity toward Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 10,145, and Staph aureus NRRLB-767, with activity up to 53.66, 71.17, and 47.89%, while it showed low activity against E. coli ATCC 25,922, while the antioxidant activity based on the DPPH assay showed maximum activity (75.25%). GC-MS investigations revealed the presence of variable chemical constituents belonging to different chemical categories, which reflected their chemical diversity. The main components are (+-) cis-Deethylburnamine (2.66%), Bis(3,6,9,12-tetraoxapentaethylene) crowno-N,N,N',N'-tetra methylpphanediamine (2.48%), and 11-phenyl-2,4,6,8-tetra(2-thienyl)-11-aza-5,13-dithiaeteracyclo[7.3.0.1(2,8)0.0(3,7)] trideca-3,6-diene-10,12,13-trione (3.13%), respectively, for Bacillus sp. axenic culture, Aspergillus sp. CO2, Aspergillus sp. CO2, and Bacillus sp. COBZ21 coculture. By studying the ADME-related physicochemical properties of coculture extract, the compound showed log Po/w values above 5 (8.82). The solubility of the substance was moderate. In order to provide a comprehensive definition of medicinal chemistry and leadlikness, it is important to note that the latter did not meet the criteria outlined in the rule of three (RO3). The toxicity prediction of the coculture extract was performed using the ProTox II web server, which showed that the selected compound has no pronounced toxicity.
Collapse
Affiliation(s)
- Ahmed A Hamed
- Microbial Chemistry Department, National Research Centre, 12622, Dokki, Cairo, Egypt.
| | - Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El-Nile, 12411, Warrak El-Hadar, Imbaba, Giza, (P.O. 30), Egypt.
| | - Ayda K Kelany
- Department of Genomic Medicine, Cairo University, Giza, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Hoda A Kabary
- Department Agricultural Microbiology, National Research Center, 33 El Buhouth St., Dokki, 12622, Giza, Egypt
| | - Nariman R Soliman
- Dairy Science Department, National Research Center, Dokki, Cairo, Egypt
| | - Mohamed E Elawady
- Microbial Biotechnology Department, Biotechnology Research Institute National Research Centre, Cairo, Egypt
| |
Collapse
|