1
|
Feng Z, Ducos B, Scerbo P, Aujard I, Jullien L, Bensimon D. The Development and Application of Opto-Chemical Tools in the Zebrafish. Molecules 2022; 27:6231. [PMID: 36234767 PMCID: PMC9572478 DOI: 10.3390/molecules27196231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
The zebrafish is one of the most widely adopted animal models in both basic and translational research. This popularity of the zebrafish results from several advantages such as a high degree of similarity to the human genome, the ease of genetic and chemical perturbations, external fertilization with high fecundity, transparent and fast-developing embryos, and relatively low cost-effective maintenance. In particular, body translucency is a unique feature of zebrafish that is not adequately obtained with other vertebrate organisms. The animal's distinctive optical clarity and small size therefore make it a successful model for optical modulation and observation. Furthermore, the convenience of microinjection and high embryonic permeability readily allow for efficient delivery of large and small molecules into live animals. Finally, the numerous number of siblings obtained from a single pair of animals offers large replicates and improved statistical analysis of the results. In this review, we describe the development of opto-chemical tools based on various strategies that control biological activities with unprecedented spatiotemporal resolution. We also discuss the reported applications of these tools in zebrafish and highlight the current challenges and future possibilities of opto-chemical approaches, particularly at the single cell level.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Bertrand Ducos
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- High Throughput qPCR Core Facility, Ecole Normale Supérieure, Paris Sciences Letters University, 46 Rue d’Ulm, 75005 Paris, France
| | - Pierluigi Scerbo
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Isabelle Aujard
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - Ludovic Jullien
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - David Bensimon
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|