1
|
Venugopala KN, Kamat V. Pyrimidines: A New Versatile Molecule in the Drug Development Field, Scope, and Future Aspects. Pharmaceuticals (Basel) 2024; 17:1258. [PMID: 39458899 PMCID: PMC11510439 DOI: 10.3390/ph17101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Pyrimidine is a moiety that occurs in living organisms and has a variety of significant biological properties in pharmacology. Due to the easy handling of synthesis, easily available precursor, and less duration for the reaction, for the synthesis, not many technical skills are needed. All these factors attract chemists to focus more on pyrimidines. Apart from the synthesis of biological applications of pyrimidines, medicinal chemists have gathered to explore more pyrimidine scaffolds due to their interesting medicinal properties and easy targeting of various binding sites. This review delves into the diverse biological activities of compounds derived from pyrimidine during the year 2024. We have attempted to explore the growing significance of pyrimidine derivatives and provide a new path for designing new potent molecules.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Vinuta Kamat
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangaluru 574 199, Karnataka, India
| |
Collapse
|
2
|
Duraisamy R, Al-Shar'i NA, Chandrashekharappa S, Deb PK, Gleiser RM, Tratrat C, Chopra D, Muthukurpalya Bhojegowd MR, Thirumalai D, Morsy MA, Ibrahim YF, Mohanlall V, Venugopala KN. Synthesis, biological evaluation, and computational investigation of ethyl 2,4,6-trisubstituted-1,4-dihydropyrimidine-5-carboxylates as potential larvicidal agents against Anopheles arabiensis. J Biomol Struct Dyn 2024; 42:4016-4028. [PMID: 37259506 DOI: 10.1080/07391102.2023.2217929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Malaria is one of the most known vector-borne diseases caused by female Anopheles mosquito bites. According to WHO, about 247 million cases of malaria and 619,000 deaths were estimated worldwide in 2021, of which 95% of the cases and 96% of deaths occurred in the African region. Sadly, about 80% of all malaria deaths were of children under five years old. Despite the availability of different insecticides used to control this disease, the emergence of drug-resistant mosquitoes threatens public health. This, in turn, highlighted the need for new larvicidal agents that are effective at different larval life stages. This study aimed to identify novel larvicidal agents. To this end, a series of ethyl 2,4,6-trisubstituted-1,4-dihydropyrimidine-5-carboxylates 8a-i was synthesized using a three-step chemical synthetic approach via a Biginelli reaction employed as a key step. All title compounds were screened against Anopheles arabiensis to determine their larvicidal activities. Among them, two derivatives, ethyl 2-((4-bromophenyl)amino)-4-(4-fluorophenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate 8b and ethyl 2-((4-bromo-2-cyanophenyl)amino)-4-(4-fluorophenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate 8f, showed the highest larvicidal activity, with mortality of 94% and 91%, respectively, and emerged as potential larvicidal agents. In addition, computational studies, including molecular docking and molecular dynamics simulations, were carried out to investigate their mechanism of action. The computational results showed that acetylcholinesterase appears to be a plausible molecular target for their larvicidal property.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ramasamy Duraisamy
- Organic Synthesis and Nano-Bio Laboratory, Department of Chemistry, Thiruvalluvar University, Vellore, India
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R) Raebareli, Lucknow, UP, India
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Raquel M Gleiser
- CREAN-IMBIV (CONICET-UNC), Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Saudi Arabia
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | | | - Dhakshanamurthy Thirumalai
- Organic Synthesis and Nano-Bio Laboratory, Department of Chemistry, Thiruvalluvar University, Vellore, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Yasmine F Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
3
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Triazole hybrid compounds: A new frontier in malaria treatment. Eur J Med Chem 2023; 259:115694. [PMID: 37556947 DOI: 10.1016/j.ejmech.2023.115694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Reviewing the advancements in malaria treatment, the emergence of triazole hybrid compounds stands out as a groundbreaking development. Combining the advantages of triazole and other moieties, these hybrid compounds offer a new frontier in the battle against malaria. Their potential as effective antimalarial agents has captured the attention of researchers and holds promise for overcoming the challenges posed by drug-resistant malaria strains. We focused on their broad spectrum of antimalarial activity of diverse hybridized 1,2,3-triazoles and 1,2,4-triazoles, structure-activity relationship (SAR), drug-likeness, bioavailability and pharmacokinetic properties reported since 2018 targeting multiple stages of the Plasmodium life cycle. This versatility makes them highly effective against both drug-sensitive and drug-resistant strains of P. falciparum, making them invaluable tools in regions where resistance is prevalent. The synergistic effects of combining the triazole moiety with other pharmacophores have resulted in even greater antimalarial potency. This approach has the potential to circumvent existing resistance mechanisms and provide a more sustainable solution to malaria treatment. While triazole hybrid compounds show great promise, further research and clinical trials are warranted to fully evaluate their safety, efficacy and long-term effects. As research progresses, these compounds can potentially revolutionize the field and contribute to global efforts to eradicate malaria, ultimately saving countless lives worldwide.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
4
|
Ravisankar N, Sarathi N, Maruthavanan T, Ramasundaram S, Ramesh M, Sankar C, Umamatheswari S, Kanthimathi G, Oh TH. Synthesis, antimycobacterial screening, molecular docking, ADMET prediction and pharmacological evaluation on novel pyran-4-one bearing hydrazone, triazole and isoxazole moieties: Potential inhibitors of SARS CoV-2. J Mol Struct 2023; 1285:135461. [PMID: 37041803 PMCID: PMC10062711 DOI: 10.1016/j.molstruc.2023.135461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
The respiratory infection tuberculosis is caused by the bacteria Mycobacterium tuberculosis and its unrelenting spread caused millions of deaths around the world. Hence, it is needed to explore potential and less toxic anti-tubercular drugs. In the present work, we report the synthesis and antitubercular activity of four different (hydrazones 7-12, O-ethynyl oximes 19-24, triazoles 25-30, and isoxazoles 31-36) hybrids. Among these hybrids 9, 10, 33, and 34, displayed high antitubercular activity at 3.12 g/mL with >90% of inhibitions. The hybrids also showed good docking energies between -6.8 and -7.8 kcal/mol. Further, most active molecules were assayed for their DNA gyrase reduction ability towards M. tuberculosis and E.coli DNA gyrase by the DNA supercoiling and ATPase gyrase assay methods. All four hybrids showed good IC50 values comparable to that of the reference drug. In addition, the targets were also predicted as a potential binder for papain-like protease (SARS CoV-2 PLpro) by molecular docking and a good interaction result was observed. Besides, all targets were predicted for their absorption, distribution, metabolism, and excretion - toxicity (ADMET) profile and found a significant amount of ADMET and bioavailability.
Collapse
Affiliation(s)
- N Ravisankar
- Department of Chemistry, Veltech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai 600 062, India
| | - N Sarathi
- Department of Chemistry, GRT Institute of Engineering and Technology (Affiliated to Anna University), Tiruttani 631 209, Tamil Nadu, India
| | - T Maruthavanan
- Department of Chemistry, SONASTARCH, Sona College of Technology, Salem 636005, Tamil Nadu, India
| | | | - M Ramesh
- Department of Chemistry, Govt. Arts College, Tiruchirappalli, Tamil Nadu 620 022, India
| | - C Sankar
- Department of Chemistry, SRM TRP Engineering College, Tiruchirappalli, Tamil Nadu 621 105, India
| | - S Umamatheswari
- Department of Chemistry, Govt. Arts College, Tiruchirappalli, Tamil Nadu 620 022, India
| | - G Kanthimathi
- Department of Chemistry, Ramco Institue of Technology, Rajapalayam, Tamil Nadu 626 117, India
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38436, Republic of Korea
| |
Collapse
|
5
|
Silver-Catalyzed Cascade Cyclization of Amino-NH-1,2,3-Triazoles with 2-Alkynylbenzaldehydes: An Access to Pentacyclic Fused Triazoles. Molecules 2022; 27:molecules27217567. [PMID: 36364393 PMCID: PMC9655256 DOI: 10.3390/molecules27217567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
An operationally simple Ag(I)-catalyzed approach for the synthesis of isoquinoline and quinazoline fused 1,2,3-triazoles was developed by a condensation and amination cyclization cascade of amino-NH-1,2,3-triazoles with 2-alkynylbenzaldehydes involving three new C-N bond formations in one manipulation, in which the group of -NH of the triazole ring serves as a nucleophile to form the quinazoline skeleton. The efficient protocol can be applied to a variety of substrates containing a range of functional groups, delivering novel pentacyclic fused 1,2,3-triazoles in good-to-excellent yields.
Collapse
|